华南理工大学学报(自然科学版) ›› 2013, Vol. 41 ›› Issue (2): 105-110.doi: 10.3969/j.issn.1000-565X.2013.02.017

• 力学 • 上一篇    下一篇

结构非线性屈曲分析的有限元降阶方法

梁珂1,2 孙秦1 Zafer Gurdal2   

  1. 1.西北工业大学 航空学院,陕西 西安 710072;2.代尔夫特理工大学 航空工程系,荷兰 代尔夫特 2629HS
  • 收稿日期:2012-02-11 修回日期:2012-05-16 出版日期:2013-02-25 发布日期:2013-01-05
  • 通信作者: 梁珂(1984-),男,博士生,主要从事结构非线性屈曲算法研究 E-mail:liangke.nwpu@163.com
  • 作者简介:梁珂(1984-),男,博士生,主要从事结构非线性屈曲算法研究
  • 基金资助:

    DESICOS欧盟项目(282522)

Finite Element-Based Order Reduction M ethod for Nonlinear Buckling Analysis of Structures

Liang lie1,2 Sun Qin1 Zafer Gurdal2   

  1. 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,Shaanxi,China;2.Faculty of Aerospace Engineering,Delft University ofTechnology,Delf2629HS,Netherlands
  • Received:2012-02-11 Revised:2012-05-16 Online:2013-02-25 Published:2013-01-05
  • Contact: 梁珂(1984-),男,博士生,主要从事结构非线性屈曲算法研究 E-mail:liangke.nwpu@163.com
  • About author:梁珂(1984-),男,博士生,主要从事结构非线性屈曲算法研究
  • Supported by:

    DESICOS欧盟项目(282522)

摘要: 基于Koiter的初始后屈曲理论以及Newton法的增量迭代技术,提出了一种能够自动跟踪非线性平衡路径的降阶方法.降阶模型中摄动载荷以及主路径上变形位移的引入使摄动展开能够在平衡路径上的任意一点处进行;在每个摄动步中将求解降阶模型得到的非线性解作为结构响应的初始预测,然后采用有限元模型计算的残余力对解进行修正,最后以修正后的解作为下一个摄动步的已知展开点,并通过更新降阶模型来反映当前结构刚度的变化.算例分析表明,该方法不仅具有很高的非线性分析精度,而且需要计算的线性方程组(阶数与有限元全模型阶数相当)的数目远小于常规的非线性有限单元法.

关键词: 屈曲, 降阶模型, 摄动, 非线性分析

Abstract:

Based on Koiter’S initial post-buckling theory and the incremental iterative method of the Newton method,an order reduction method that automatically tracks the nonlinear equilibrium path is proposed.In this method,the perturbation load and the deformation on the primary path are introduced to make the perturbation to expand at any point along the path.In each perturbation step,the nonlinear solution obtained from the reduced-order model is taken as an initial prediction of the structural response and is corrected with the residual lcad obtained by the FE model.Then,the corrected solution is taken as the expansion point of the next perturbation step,and the reduced-ordermodel is updated to reflect the change of structural stiffness.Numerical examples show that the proposed method is of high accuracy for the nonlinear analysis,and that the number of the linear systems of equations(the scale of which equals that of the full finite element model)needed to be solved is much less than that of the general nonlinear finite element method.

Key words: buckling, reduced-order model, perturbation, nonlinear analysis

中图分类号: