华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (5): 97-101.doi: 10.3969/j.issn.1000-565X.2011.05.017

• 计算机科学与技术 • 上一篇    下一篇

基于时空扩展局部线性嵌入的视频轨迹分析

符茂胜 罗斌 孔敏 秦剑鹏   

  1. 安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039
  • 收稿日期:2010-08-23 修回日期:2011-01-19 出版日期:2011-05-25 发布日期:2011-04-01
  • 通信作者: 符茂胜(1972-) ,男,博士,副教授,主要从事模式识别、视频分析研究. E-mail:fums@wxc.edu.cn
  • 作者简介:符茂胜(1972-) ,男,博士,副教授,主要从事模式识别、视频分析研究.
  • 基金资助:

    国家自然科学基金资助项目( 60772122) ; 安徽省自然科学基金资助项目( 090412261x, 11040606M150) ; 安徽省教育厅自然科学重点科研计划项目( KJ2009A054,KJ2010A326)

Analysis of Video Trajectory Based on Spatial-Temporal Extension to Locally Linear Embedding

Fu Mao-sheng  Luo Bin  Kong Min  Qin Jian-peng   

  1. Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education,Anhui University,Hefei 230039,Anhui,China
  • Received:2010-08-23 Revised:2011-01-19 Online:2011-05-25 Published:2011-04-01
  • Contact: 符茂胜(1972-) ,男,博士,副教授,主要从事模式识别、视频分析研究. E-mail:fums@wxc.edu.cn
  • About author:符茂胜(1972-) ,男,博士,副教授,主要从事模式识别、视频分析研究.
  • Supported by:

    国家自然科学基金资助项目( 60772122) ; 安徽省自然科学基金资助项目( 090412261x, 11040606M150) ; 安徽省教育厅自然科学重点科研计划项目( KJ2009A054,KJ2010A326)

摘要: 视频轨迹为视频图像的自动化分析提供了新的工具.为此,提出了基于时空扩展局部线性嵌入的视频轨迹描绘算法.该算法首先将视频片段分割成连续的视频子序列,利用视频子序列的非平凡k 近邻来捕获具有时空约束的相似视频序列模式; 然后在每个视频子序列与其非平凡k 近邻之间构造重构权; 最后利用重构权计算视频子序列的低维嵌入向量,从而获得视频子序列的视频轨迹.实验证明,所提出的算法能够有效地刻画视频复杂的时空结构特征,较原始局部线性嵌入算法能描绘出更合理的视频轨迹.

关键词: 视频轨迹, 降维, 流形学习, 局部线性嵌入

Abstract:

As the video trajectory has become a new tool for the automatic analysis of video images,an algorithm of video trajectory description based on the spatial-temporal extension to locally linear embedding ( ST-LLE) is proposed. In this algorithm,first,video clips are divided into continuous subsequences,and non-trivial k-nearest neighbors ( ntKNN) are adopted to capture similar video subsequence mode with spatial-temporal constraint. Then,the weights between each video subsequence and its non-trivial k-nearest neighbors are constructed,according to which the low-dimension embedded vectors of the video subsequence are calculated. Thus,the trajectory of the video subsequence is successfully obtained. Experimental results demonstrate that the proposed algorithm effectively describes the complex spatial-temporal structures of video sequences and helps to obtain more reasonable video trajectory,as compared with the original locally linear embedding algorithm.

Key words: video trajectory, dimensionality reduction, manifold learning, locally linear embedding