华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (9): 13-17,23.

• 土木建筑工程 • 上一篇    下一篇

结构可靠度计算的Neumann展开响应面法

苏成1,2  李鹏飞3  韩大建1,2   

  1. 1. 华南理工大学 土木与交通学院, 广东 广州 510640; 2. 华南理工大学 亚热带建筑科学国家重点实验室, 广东 广州 510640; 3. 广东省 建筑科学研究院, 广东 广州 510500
  • 收稿日期:2008-06-30 修回日期:2009-01-19 出版日期:2009-09-25 发布日期:2009-09-25
  • 通信作者: 苏成(1968-),教授,博士生导师,主要从事结构工程与桥梁工程研究. E-mail:cvchsu@scut.edu.cn
  • 作者简介:苏成(1968-),教授,博士生导师,主要从事结构工程与桥梁工程研究.
  • 基金资助:

    国家科技支撑计划子课题(2006BAJ01B07);华南理工大学亚热带建筑科学国家重点实验室资助课题(2008ZC21)

Neumann-Expansion Response Surface Method for Calculating Structure Reliability

Su Cheng 1.2  Li Peng-fei3  Han Da-jian 1.2   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Gnangdong, China; 2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, Guangdong, China; 3. Guangdong Provincial Academy of Building Research, Guangzhou 510500, Guangdong, China
  • Received:2008-06-30 Revised:2009-01-19 Online:2009-09-25 Published:2009-09-25
  • Contact: 苏成(1968-),教授,博士生导师,主要从事结构工程与桥梁工程研究. E-mail:cvchsu@scut.edu.cn
  • About author:苏成(1968-),教授,博士生导师,主要从事结构工程与桥梁工程研究.
  • Supported by:

    国家科技支撑计划子课题(2006BAJ01B07);华南理工大学亚热带建筑科学国家重点实验室资助课题(2008ZC21)

摘要: 当结构功能函数无法表达为随机变量的解析表达式时,响应面法是一种有效的可靠度计算方法,但该法需进行多次确定性有限元数值试验,效率较低.为此文中提出一种改进的响应面法,即Neumann展开响应面法,该法通过引入Neumann级数展开式,有效缩短了有限元数值试验时间,从而提高了响应面法的计算效率.数值算例表明,结构刚度矩阵规模越大,相对于传统响应面法,Neumann展开响应面法的计算效率越高,同时又能保持良好的计算精度.

关键词: 结构可靠度, 响应面法, 有限元法, Neumann级数展开

Abstract:

When structure performance functions can not be explicitly expressed as the analytical expressions of random variables,the response surface method(RSM) becomes effective in reliability analysis.However,RSM is of low efficiency because it requires multiple determinate finite-element numerical tests.In order to solve this pro-blem,an improved RSM,namely the Neumann-expansion response surface method(NERSM),is proposed.In this method,the computation time of finite-element numerical tests is effectively shortened by introducing the Neumann series expansion, thus improving the computation efficiency. Numerical examples show that, as compared with the conventional RSM, the NERSM is of higher computation efficiency without reducing the computation accuracy when the scale of the structure stiffness matrix becomes larger.

Key words: structure reliability, response surface method, finite element method, Neumann series expansion