华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (10): 11-15.

• 电子、通信与自动控制 • 上一篇    下一篇

基于邻域空间模式的运动相关电位特征提取方法

刘美春 谢胜利 赵敏   

  1. 华南理工大学 电子与信息学院, 广东 广州 510640
  • 收稿日期:2008-10-08 修回日期:2008-12-25 出版日期:2009-10-25 发布日期:2009-10-25
  • 通信作者: 刘美春(1979-),女,博士生,主要从事脑电信号处理、脑-机接口、模式识别研究. E-mail:liu.meichun@mail.scut.edu.cn
  • 作者简介:刘美春(1979-),女,博士生,主要从事脑电信号处理、脑-机接口、模式识别研究.
  • 基金资助:

    国家自然科学基金重点项目(U0635001);国家自然科学基金资助项目(60505005)

An Approach to Extracting Features of Movement-Related Potentials Based on Neighborhood Spatial Pattern

Liu Mei-chun  Zhao Min  Xie Sheng-li   

  1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-10-08 Revised:2008-12-25 Online:2009-10-25 Published:2009-10-25
  • Contact: 刘美春(1979-),女,博士生,主要从事脑电信号处理、脑-机接口、模式识别研究. E-mail:liu.meichun@mail.scut.edu.cn
  • About author:刘美春(1979-),女,博士生,主要从事脑电信号处理、脑-机接口、模式识别研究.
  • Supported by:

    国家自然科学基金重点项目(U0635001);国家自然科学基金资助项目(60505005)

摘要: 为解决脑-机接口(BCI)研究中所采集的脑电图(EEG)信号数据分布复杂和训练样本不足的问题,文中提出了一种新的特征提取方法——邻域空间模式(NSP)算法,用于提取BCI想象肢体运动分类算法中使用的重要分类特征——运动相关电位(MRPs).NSP算法不需要对样本的数据分布进行假设,主要利用样本的邻域关系和类别信息寻找最佳投影方向,使得映射后邻域内异类样本距离之和与同类样本距离之和的比值最大化.采用BCI竞赛2003和2001的其中两组数据进行实验,结果表明NSP算法能更有效地提取MRPs特征.

关键词: 邻域, 特征提取, 脑-机接口, 运动相关电位, 事件相关失同步, 同步

Abstract:

In order to remedy the complex distribution of recorded electroencephalogram (EEG) data and the shortage of training data in terms of brain-computer interface ( BCI), a novel approach named neighborhood spatial pattern (NSP) is proposed to extract movement-related potentials (MRPs), which constitute the most important fea- tures utilized in the classification algorithms for the motor-imagery-based BCI. NSP searches the optimal direction which maximizes the ratio of the between-class distance to the within-class distance of the neighborhood in the pro- jected space. During the search, no assumptions about the latent data distribution should be made, and only the neighborhood relationship and the label information are required. NSP is also applied to two datasets from BCI com- petitions 2003 and 2001. The results show that NSP can effectively extract MPRs features.

Key words: neighborhood, feature extraction, brain-computer interface, movement-related potential, event-relateddesynchronization/synchronization