华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (10): 120-124.

• 机械工程 • 上一篇    下一篇

奥氏体不锈钢小孔钻削仿真及试验研究

徐兰英叶邦彦1  伍强王伟文赖兴余彭锐涛1   

  1. 1. 华南理工大学 机械与汽车工程学院, 广东 广州 510640; 2. 广东技术师范学院 机电学院, 广东 广州 510635
  • 收稿日期:2008-03-13 修回日期:2008-05-26 出版日期:2008-10-25 发布日期:2008-10-25
  • 通信作者: 徐兰英(1972-),女,博士生,讲师,主要从事难加工材料的先进制造技术研究. E-mail:xulanying20008@163.com
  • 作者简介:徐兰英(1972-),女,博士生,讲师,主要从事难加工材料的先进制造技术研究.
  • 基金资助:

    广东省自然科学基金资助项目(06025546)

Simulation and Experimental Investigation of Minipore Drilling of Austenitic Stainless Steel

Xu Lan-ying1  Ye Bang-yan1  Wu Qiang2  Wang Wei-wen Lai Xing-yu1  Peng Rui-tao1   

  1.  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China; 2. College of Mechanical and Electronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, Guangdong, China
  • Received:2008-03-13 Revised:2008-05-26 Online:2008-10-25 Published:2008-10-25
  • Contact: 徐兰英(1972-),女,博士生,讲师,主要从事难加工材料的先进制造技术研究. E-mail:xulanying20008@163.com
  • About author:徐兰英(1972-),女,博士生,讲师,主要从事难加工材料的先进制造技术研究.
  • Supported by:

    广东省自然科学基金资助项目(06025546)

摘要: 基于有限变形理论、虚功原理、更新的拉格朗日公式及热弹塑性本构方程,建立了金属小孔钻削加工的热力耦合有限元模型;针对难加工材料1Cr18Ni9Ti进行了小孔钻削加工过程的模拟与试验研究;对切削加工有限元模拟中的关键技术,如材料模型、工件与切屑的分离、断裂准则以及动态网格自适应技术等进行了探讨,动态模拟了麻花钻钻孔中切屑的成形过程,其中工件采用刚塑性材料模型,刀具采用考虑了温度变化的刚性材料模型.仿真结果与试验数据吻合,表明所建立的有限元模型是正确的,可用来对钻削力、扭矩及钻削温度随进给量的变化进行有效的预测.

关键词: 钻削, 热力耦合, 切屑分离标准, 有限元模拟

Abstract:

Based on the finite deformation theory, the virtual work theory, the updated Lagrange formula and the thermo-elastic-plastic constitutive equation, a coupled thermo-mechanical finite element model of metal minipore drilling process was established. Then, the minipore drilling process of a hard-to-cut material 1Cr18NigTi was simulated and experimentally studied. Some key techniques in the finite element simulation of metal cutting process, such as the material model, the chip separation, the damage criterion, and the dynamic mesh self-adaptive technology, were also discussed. Moreover, the chip formation in the twist drilling process was simulated by using the rigid plastic material model for workpieces and the thermal rigid model for tools. It is found that the simulated results accord well with the experimental ones, thus showing that the proposed finite element model is not only correct but also feasible in the prediction of the variations of drilling force, torque, and temperature with the feed.

Key words: drilling, thermo-mechanical coupling, chip separation criterion, finite element simulation