华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (8): 111-122.doi: 10.12141/j.issn.1000-565X.240552

• 土木建筑工程 • 上一篇    下一篇

考虑非线性影响的网状吊杆拱桥稳定分析

江祖慊1, 肖汝诚1, 宋超林1, 孙斌1, 王业腾1, 姜海西2   

  1. 1.同济大学 土木工程学院,上海 200092
    2.上海城投公路投资(集团)有限公司,上海 200335
  • 收稿日期:2024-11-16 出版日期:2025-08-25 发布日期:2025-03-12
  • 通信作者: 孙斌(1977—),男,博士,副教授,主要从事大跨度桥梁结构理论研究。 E-mail:sunbin@tongji.edu.cn
  • 作者简介:江祖慊(1996—),男,博士生,主要从事大跨度桥梁结构理论研究。E-mail: zuqianjiang@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(52378185);国家自然科学基金青年科学基金项目(52308196);宁波市交通运输局科技项目;浙江省交通运输厅科技计划项目(2021060);同济大学建筑设计研究院(集团)有限公司自主课题(2023J-JZ07)

Stability Analysis of the Network Arch Bridge Considering Nonlinear Effects

JIANG Zuqian1, XIAO Rucheng1, SONG Chaolin1, SUN Bin1, WANG Yeteng1, JIANG Haixi2   

  1. 1.College of Civil Engineering,Tongji University,Shanghai 200092,China
    2.Shanghai Chentou Group Corporation,Shanghai 200335,China
  • Received:2024-11-16 Online:2025-08-25 Published:2025-03-12
  • Contact: 孙斌(1977—),男,博士,副教授,主要从事大跨度桥梁结构理论研究。 E-mail:sunbin@tongji.edu.cn
  • About author:江祖慊(1996—),男,博士生,主要从事大跨度桥梁结构理论研究。E-mail: zuqianjiang@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52378185)

摘要:

网状吊杆拱桥是以至少两次交叉的倾斜吊杆代替传统竖直吊杆的系杆拱桥体系。交叉布置的网状吊杆可以有效提升传统拱桥的竖向刚度和整体力学性能,因此在桥梁工程领域受到关注。然而,随着拱桥跨径的增加及薄壁钢结构的广泛应用,结构稳定性问题日益突出,特别是以受压为主的钢拱肋失稳风险成为制约其工程应用的关键因素。为系统分析网状吊杆提篮式拱桥的稳定性能,探明不同结构布置参数对结构整体稳定性的影响,该研究综合考虑几何非线性、材料非线性及结构初始缺陷,采用非线性有限元方法建立参数化空间杆系有限元模型,分析了不同吊杆张拉力对整体稳定性的影响;计算了网状吊杆拱桥拱肋关键节点在荷载作用下的位移响应及非线性失稳临界荷载;对比了国内外规范与非线性有限元方法计算结果的差异;并研究了不同矢跨比、拱肋倾角及吊杆倾角对网状吊杆拱桥稳定性的影响规律。研究结果表明,吊杆索力的改变对网状吊杆拱桥整体稳定性能影响不大;基于规范方法所得的网状吊杆拱桥拱肋的极限承载力计算结果较非线性有限元方法更为保守;网状吊杆拱桥的侧向整体稳定性随矢跨比和拱肋倾角的增加而提高,随吊杆倾角的增加先上升后下降;网状吊杆拱桥吊杆倾角设置在50°~60°左右时侧向稳定性能较好。

关键词: 网状吊杆拱桥, 非线性有限元, 整体稳定, 矢跨比, 拱肋倾角, 吊杆倾角

Abstract:

A networked suspension cable arch bridge is a type of truss arch bridge system where at least two inclined suspension cables intersect, replacing the traditional vertical suspension cables. The cross-arranged networked suspension cables can effectively enhance the vertical stiffness and overall mechanical performance of traditional arch bridges, which has attracted attention in the field of bridge engineering. However, with the increasing span of arch bridges and the widespread use of thin-walled steel structures, structural stability issues have become more prominent. In particular, the risk of instability in steel arch ribs, which are primarily under compression, has become a key factor limiting its engineering application. To systematically analyze the stability performance of a networked suspension cable arch bridge and to explore the impact of different structural arrangement parameters on the overall stability of the structure, this study comprehensively considered geometric nonlinearity, material nonlinearity, and structural initial defects. A parametric spatial bar finite element model was established using nonlinear finite element methods to analyze the effects of varying cable tension forces on the overall stability. The displacement response and nonlinear instability critical load of key nodes on the arch ribs under load were calculated. The results from national and international standards were compared with those obtained using nonlinear finite element methods. Additionally, the study investigated the influence of different rise-to-span ratios, arch rib inclination angles, and cable inclination angles on the stability of the networked suspension cable arch bridge. Results show that variations in the suspension cable tension have little impact on the overall stability of the networked suspension cable arch bridge. The ultimate capacity of arch ribs based on standard methods is more conservative than that obtained through the nonlinear finite element method.The lateral overall stability of network arch bridges improves with increasing rise-to-span ratio and arch rib inclination, while it first increases and then decreases with the increase in cable inclination angle. The lateral stability performance of the bridge is optimal when the cable inclination angle is set between 50°and 60°.

Key words: network arch bridge, nonlinear finite element, stability, rise-to-span ratio, arch rib inclination, cable inclination

中图分类号: