华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (8): 73-86.doi: 10.12141/j.issn.1000-565X.240403

• 智慧交通系统 • 上一篇    下一篇

车联网环境下城市快速路主线与入口匝道协同控制方法

吴昊都1  石杨1  孙健1,2   

  1. 1.长安大学 运输工程学院,西安 710064;

    2.长安大学 未来交通学院,西安 710064

  • 出版日期:2025-08-25 发布日期:2025-03-12

A Coordinated Traffic Flow Control Method for High Density On-Ramp Merging Area of Urban Expressway

WU Haodu1  SHI Yang1  SUN Jian1,2   

  1. 1. School of Transportation Engineering, Chang’an University, Xi’an 710064, Shaanxi, China;

    2. School of Future Transportation, Chang’an University, Xi’an 710064, Shaanxi, China

  • Online:2025-08-25 Published:2025-03-12

摘要:

随着智能网联车辆(CAV)技术在主动交通管理领域的深入应用,可变限速(VSL)策略成为提升道路交通流通行效率和安全性的关键。针对城市快速路合流区域的交通冲突导致通行能力下降和车速急剧变化问题,本文提出了一种面向车联网环境下快速路主线和入口匝道的协同可变限速控制策略方法。首先,采用基于METANET的主线交通流预测模型,以总行程时间和距离最小构建双目标函数,通过应用模型预测控制(MPC)进行优化求解;然后,将可变限速控制问题抽象为马尔可夫决策过程,以平均速度、吞吐量和车均延误为指标构建复合奖励函数,通过引入深度Q网络(DQN)计算不同交通流状态下的最优匝道限速,通过路侧设施(I2V)向CAV发布限速信息;最后,以徐州市北三环快速路为实例对提出的协同控制策略方法进行仿真测试。基于SUMO仿真实验结果表明,本文提出的策略方法与仅对主线进行限速控制的场景相比,路网车辆总行程时间降低8.51%,平均速度提升14.49%,交通密度波动降低14.81%,证明了本策略方法在车联网环境下能有效提升合流区通行效率,减小主线和入口匝道车辆的速度差异,缩小交通拥堵时空范围,从而提高城市快速路交通流的稳定性。

关键词: 智能交通, 可变限速控制, 深度Q网络, 城市快速路, 入口匝道控制, METANET

Abstract:

With the increasing application of Connected and Autonomous Vehicle (CAV) technologies in active traffic management, Variable Speed Limit (VSL) strategies have become crucial for improving traffic flow efficiency and safety. Aiming to relieve the traffic conflicts in urban expressway merging areas that lead to reduced capacity and abrupt speed variations, this paper proposes a coordinated variable speed limit control strategy for expressway mainline and on-ramp in a vehicular network environment. First, a mainline traffic flow prediction model based on METANET is adopted, constructing a bi-objective function to minimize the total travel time and distance, using Model Predictive Control (MPC). Then, the variable speed limit control problem is modelled as a Markov decision process, with a composite reward function based on average speed, throughput, and vehicle delay. By introducing Deep Q-network (DQN), the optimal on-ramp speed limits under different traffic flow conditions are calculated and disseminated to CAVs through Vehicle-to-Infrastructure (V2I) communication. Finally, the proposed coordinated control strategy is simulated and tested using the North Third Ring Expressway in Xuzhou, China as a case study. The empirical results based on SUMO microsimulation demonstrate that the proposed strategy, compared to the scenario with speed control only on the mainline, reduces the total travel time of network vehicles by 3.75%, increases the average speed by 14.49%, and reduces traffic density fluctuations by 14.81%. This confirms that the strategy effectively improves merging area traffic throughput, reduces speed differentials between mainline and ramp vehicles, narrows the spatiotemporal scope of traffic congestion, which consequently enhances traffic flow stability in a vehicular network environment.

Key words: intelligent transportation, variable speed limit; deep Q-network, urban expressway, on-ramp control, METANET