华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (4): 50-60.doi: 10.12141/j.issn.1000-565X.240310

• 土木建筑工程 • 上一篇    下一篇

考虑箍筋约束作用的超高强混凝土预制柱轴压承载力修正计算

王素裹1, 邱崴1, 郑宜2, 范冰辉1   

  1. 1.福州大学 土木工程学院,福建 福州 350108
    2.建同设计有限公司,广东 广州 511466
  • 收稿日期:2024-06-13 出版日期:2025-04-25 发布日期:2024-07-22
  • 作者简介:王素裹(1984—),女,博士,副教授,主要从事结构设计理论、结构抗震研究。E-mail: wangsuguo@foxmail.com
  • 基金资助:
    福建省自然科学基金项目(2024J01355)

Modified Calculation of Axial Compressive Bearing Capacity of Ultra-High-Strength Concrete Precast Column Considering Constraint Effect of Stirrup

WANG Suguo1, QIU Wei1, CHEANG I2, FAN Binghui1   

  1. 1.College of Civil Engineering,Fuzhou University,Fuzhou 350108,Fujian,China
    2.Jian Tong Consulting Group,Guangzhou 511466,Guangdong,China
  • Received:2024-06-13 Online:2025-04-25 Published:2024-07-22
  • About author:王素裹(1984—),女,博士,副教授,主要从事结构设计理论、结构抗震研究。E-mail: wangsuguo@foxmail.com
  • Supported by:
    the Natural Science Foundation of Fujian Province(2024J01355)

摘要:

为探析箍筋约束作用对超高强混凝土柱轴压承载力的影响,先开展了足尺的超高强混凝土柱和普通柱轴心受压破坏对比试验,研究了超高强柱与普通柱在裂缝开展规律、破坏形态及极限承载力上的不同。并在此基础上,结合试验结果进一步开展有限元分析,继续针对36个超高强混凝土足尺柱进行了模拟,重点分析了箍筋形式、箍筋间距、箍筋直径等参数对超高强混凝土柱轴压性能的影响,结合试验结果和参数分析结果提出了考虑箍筋约束作用的超高强混凝土柱轴压承载力修正计算公式,并与现行《混凝土结构设计规范》的计算公式进行了对比。结果表明:按等强设计的超高强混凝土柱比普通混凝土柱具有更高的极限承载力,但比普通混凝土柱具有更大脆性,达到极限承载力时材料破坏比普通混凝土柱更为明显;箍筋对核心区混凝土产生的约束作用对超高强混凝土柱的轴压承载力起到了提高作用,改变箍筋形式、箍筋间距、箍筋直径对超高强混凝土柱的极限承载力以及峰值压应变会有较明显的影响;该文提出的超高强混凝土柱轴心受压承载力修正计算公式,结合了研究得出的超高强混凝土柱与普通柱的区别,考虑了箍筋对核心区混凝土的约束效果,相比规范所提的未考虑箍筋约束且主要适用于普通混凝土柱的计算公式,更能在保证安全余度的前提下充分发挥材料的作用,可为实际工程设计提供参考。

关键词: 超高强混凝土, 轴心受压, 箍筋约束, 承载力修正公式, 约束混凝土

Abstract:

To study the effect of stirrup confinement on the axial compressive bearing capacity of ultra-high-strength concrete (UHSC) precast columns, this paper first conducted an axial compression contrast experiment between full-size UHSC column and ordinary column, and investigated the difference of crack development, failure pattern and ultimate bearing capacity of these two type columns. Based on the experimental results, further finite element analysis was conducted to simulate 36 full-scale UHSC columns. The study focused on analyzing the effects of stirrup configuration, stirrup spacing, and stirrup diameter on the axial compressive performance of UHSC columns. Combining the experimental findings and parametric analysis results, a modified calculation formula for the axial compressive bearing capacity of UHSC columns considering stirrup confinement was proposed. The proposed formula was then compared with the calculation formula in the current Code for Design of Concrete Structures. The results show that: the ultimate bearing capacity of equal-strength designed UHSC column is higher than that of ordinary concrete column, but it is more brittle than ordinary concrete, especially when reaching the ultimate bearing capacity; the confinement effect of stirrups on the core concrete enhances the axial compressive bearing capacity of UHSC columns. Changes in stirrup configuration, stirrup spacing, and stirrup diameter have a significant impact on the ultimate bearing capacity and peak compressive strain of UHSC columns; the proposed axial compressive bearing capacity correction formula for UHSC columns incorporates the differences between UHSC columns and ordinary concrete columns, considering the confinement effect of stirrups on the core concrete. Compared to the calculation formula provided in the code, which does not account for stirrup confinement and is primarily applicable to ordinary concrete columns, this formula better utilizes the material’s potential while ensuring safety margins. It can serve as a useful reference for practical engineering design.

Key words: ultra-high-strength concrete, axial compression, constraint of stirrup, modified bearing capacity formula, confined concrete

中图分类号: