华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (9): 104-114.doi: 10.12141/j.issn.1000-565X.240023

• 交通运输工程 • 上一篇    下一篇

汽车车门密封空腔噪声及其传递实验研究

张斌瑜1,2(), 王毅刚1,3, 俞悟周4(), 彭紫宁1,3, 宋俊2, 叶斌2   

  1. 1.同济大学 汽车学院,上海 201804
    2.广州汽车集团股份有限公司 汽车工程研究院,广东 广州 511400
    3.上海市 地面交通工具空气动力与热环境模拟重点实验室,上海 201804
    4.同济大学 物理科学与工程学院,上海 200092
  • 收稿日期:2024-01-11 出版日期:2024-09-25 发布日期:2024-04-12
  • 通信作者: 俞悟周(1972—),女,博士,副教授,主要从事噪声与振动控制研究。 E-mail:ywzh@tongji.edu.cn
  • 作者简介:张斌瑜(1989—),男,博士,高级工程师,主要从事噪声与振动控制研究。E-mail: zhangbinyu2012@hotmail.com
  • 基金资助:
    国家重点研发计划项目(2022YFE0208000)

Experimental Study on the Noise and Transmission of Automobile Door Sealing Cavity

ZHANG Binyu1,2(), WANG Yigang1,3, YU Wuzhou4(), PENG Zining1,3, SONG Jun2, YE Bin2   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.GAC Automotive Research & Development Center,Guangzhou 511400,Guangdong,China
    3.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems,Shanghai 201804,China
    4.School of Physics Science and Engineering,Tongji University,Shanghai 200092,China
  • Received:2024-01-11 Online:2024-09-25 Published:2024-04-12
  • Contact: 俞悟周(1972—),女,博士,副教授,主要从事噪声与振动控制研究。 E-mail:ywzh@tongji.edu.cn
  • About author:张斌瑜(1989—),男,博士,高级工程师,主要从事噪声与振动控制研究。E-mail: zhangbinyu2012@hotmail.com
  • Supported by:
    the National Key R & D Program of China(2022YFE0208000)

摘要:

汽车车门密封系统风激下的发声和向车内的传声,其现象和机制复杂,研究较少,认识不明晰。以某SUV车门B柱、C柱第1道密封空腔和尾门密封空腔为研究对象,抽取其结构并等效成规则空腔结构;建立了在小型声学风洞中空腔发声和传声的实验测试平台和方法,开展了风激下的空腔声特性及其影响因素、密封条不同压缩量和密封间隙传声特性实验研究。研究结果表明:车门密封空腔形成的啸叫(尾门空腔)机理不同,低风速时是自激振荡与赫姆霍兹共振腔耦合共振产生,高风速时是自激振荡与空腔模态耦合共振产生,自激振荡以及在流体宽带激励下的空腔共振是频谱中其它峰值产生的根源;B柱和C柱空腔与尾门空腔密封条对声特征的影响差异较大;来流偏航角、俯仰角和湍流度变化对自激振荡激发的幅值和频率影响较大,是车内小于1 000 Hz的带宽峰值噪声的来源之一;密封条压缩量较小时(如0~4 mm)其压缩量增加传声能力反而有增加的情况。基于空腔噪声理论得到的车门门缝小空腔声现象和机理是之前研究缺少的,具有独特性;密封条不同压缩量传声结论具有一定的实际应用价值。

关键词: 汽车车门, 密封条, 空腔噪声, 传声, 风洞试验

Abstract:

The phenomenon and mechanism of sound generation and transmission of the car door sealing system with wind excitation are complex, and its research is much less.Taking the door primary sealing cavities of the B-pillar and C-pillar and the sealing cavity of the backdoor of a SUV as the research objects, this paper extracted their structures which are equivalent to regular cavity structures. It established a small acoustic wind tunnel with a testing platform and the testing method for the cavity sound generation and transmission, and conducted experiment on the sound characteristics and influencing factors, as well as the sound transmission characteristics of different compression of sealing strips and sealing gaps for the cavities with wind excitation. The results indicate that the mechanism of whistling from the door sealing cavity (backdoor cavity) is different. At low wind speeds, it is generated by coupling resonance between self-sustained oscillation and Helmholtz resonance cavity, while at high wind speeds, it is generated by coupling resonance between self-sustained oscillation and cavity mode, and self-sustained oscillation and cavity resonance with broadband excitation are the essential reasons for other peaks in the spectrum. There are significant sound characteristic differences between B-pillar and C-pillar the cavities and the backdoor cavity due to the sealing strip. The changes in yaw angle, pitch angle, and turbulence intensity of the flow have a significant impact on the amplitude and frequency of self-excited oscillation excitation, which is one of the sources of peak noise with a bandwidth below 1 000 Hz in the car. For small sealing strips compression (such as 0~4 mm) the sound transmission may increase with the increase of compression. The research on the sound phenomenon and mechanism of small cavity in car door gaps based on cavity noise theory is missing from previous studies. The sound transmission conclusion of different compression of the sealing strip has guiding significance for the design of car door seals.

Key words: car door, sealing strip, cavity noise, sound transmission, wind tunnel test

中图分类号: