华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (10): 135-145.doi: 10.12141/j.issn.1000-565X.230726

• 图像处理 • 上一篇    下一篇

多尺度残差可变形肺部CT图像配准算法

刘卫朋1 李旭2 任子文1 祁业东1   

  1. 1.河北工业大学 人工智能学院,天津 300401;

    2.河北工业大学 生命科学与健康工程学院,天津 300401

  • 出版日期:2024-10-25 发布日期:2024-01-31
  • 作者简介:刘卫朋(1979—),男,博士,研究员,主要从事计算机视觉研究。E-mail:liuweipeng@hebut.edu.cn

Algorithm for Registration of Multiscale Residual Deformable Lung CT Images

#br#

LIU Weipeng1  LI Xu REN Ziwen1  QI Yedong1   

  1. 1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401;

    2. School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401

  • Online:2024-10-25 Published:2024-01-31
  • About author:刘卫朋(1979—),男,博士,研究员,主要从事计算机视觉研究。E-mail:liuweipeng@hebut.edu.cn

摘要:

肺部4D-CT图像受到呼吸、心跳影响形变较大,肺内的运动尺度可能大于算法用于优化过程的感兴趣结构(血管、气道等),这可能导致配准算法仅对齐了血管、气道等明显特征。针对肺实质轮廓这种形变较大的结构,配准后的强度差异性较大的问题,提出以无监督端到端深度学习为基础的多尺度残差可变形图像配准框架,使用编码器-解码器结构形式的多尺度深度残差网络作为所提出配准框架中形变场生成模型,增强了特征表达能力、更高效的利用参数并有效提高网络的收敛能力。通过多分辨率自注意力融合模块提高了网络对多尺度信息的感知能力,并且设计了包含特征校正提取模块的跳跃连接来有选择的提取编码器输出的特征图并重新校准后供解码器学习对齐偏移。为了评估所提出配准框架的有效性,将本文方法在dir-lab公共数据集上的目标配准误差与传统方法、目前先进的无监督配准方法进行了比较。结果表明,所提出的配准框架在dir-lab公共数据集上目标配准误差可以达到1.44±1.24mm,优于传统方法和主流的无监督配准算法。此外,在控制折叠体素小于0.1%的情况下,估计密集变形向量场耗时小于2S,显示出了该算法在对时间敏感的肺部研究中的巨大潜力。

关键词:

深度学习, 肺部CT图像, 图像配准, 无监督学习

Abstract:

The 4D-CT image of the lungs is greatly deformed by breathing and heartbeat, and the motion scale within the lungs may be larger than the structures of interest (blood vessels, airways, etc.) used by the algorithm for optimization. This may lead to the registration algorithm aligning only obvious features such as blood vessels and airways. For the problem of large intensity differences in the registration of lung parenchyma contours, a multi-scale residual deformable image registration framework based on unsupervised end-to-end deep learning is proposed. A multi-scale deep residual network with encoder-decoder structure is used as the deformation field generation model in the proposed registration framework, which enhances feature representation ability, utilizes parameters more efficiently, and effectively improves the convergence ability of the network. The network's ability to perceive multi-scale information is improved through the multi-resolution self-attention fusion module, and a skip connection containing a feature correction extraction module is designed to selectively extract the feature maps output by the encoder and realign them for the decoder to learn alignment offsets. To evaluate the effectiveness of the proposed registration framework, the target registration error of the proposed method on the dir-lab public dataset was compared with traditional methods and current advanced unsupervised registration methods. The results show that the proposed registration framework achieves a target registration error of 1.44±1.24mm on the dir-lab public dataset, which is superior to traditional methods and mainstream unsupervised registration algorithms. In addition, with a controlled folding voxel of less than 0.1%, estimating the dense deformation vector field takes less than 2 seconds, demonstrating the great potential of this algorithm in time-sensitive lung research.

Key words: deep learning, lung CT image, image registration, unsupervised learning

中图分类号: