华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (10): 146-158.doi: 10.12141/j.issn.1000-565X.230350

• 图像处理 • 上一篇    

交通基础设施裂缝病害图像增广方法

蒋盛川1 钟山2 吴荻非2  刘成龙2   

  1. 1.上海理工大学 交通系统工程系,上海 200093;

    2. 同济大学 道路与交通工程教育部重点实验室,上海 201804


  • 出版日期:2024-10-25 发布日期:2024-01-26
  • 通信作者: 钟山(2000—),男,博士生,主要从事基础设施智能检测与损伤机理研究。 E-mail:zhongshanbetter@tongji.edu.cn
  • 作者简介:蒋盛川(1987—),女,博士,副教授,主要从事交通基础设施智慧运维管理研究。E-mail:jsc@usst.edu.cn

Virtual Generation Method of Transportation Infrastructure Crack Images

JIANG Shengchuan1  ZHONG Shan 2  WU Difei2   LIU Chenglong2   

  1. 1. Department of Traffic Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;

    2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, 201804, Shanghai

  • Online:2024-10-25 Published:2024-01-26
  • Contact: 钟山(2000—),男,博士生,主要从事基础设施智能检测与损伤机理研究。 E-mail:zhongshanbetter@tongji.edu.cn
  • About author:蒋盛川(1987—),女,博士,副教授,主要从事交通基础设施智慧运维管理研究。E-mail:jsc@usst.edu.cn

摘要:

基于深度学习的交通基础设施裂缝检测模型依赖于大规模的数据进行训练。针对特定交通设施场景下多种形态的裂缝样本图像难以获取的问题,本文提出了一种基于Pix2pixHD的交通基础设施裂缝病害图像增广方法。首先,基于收集的少量裂缝图像数据利用Pix2pixHD模型建立裂缝病害的真实图像和标注标签之间的空间映射关系。其次,编辑标签域中的对象,可通过迁移其他数据集标签、人工编辑、图像形态学膨胀操作、随机叠加操作等方法生成表征多种形态的裂缝轮廓。最后,将编辑后的标签域通过Pix2pixHD模型转换回图像域,以实现交通基础设施裂缝数据集自适应增广。本文考虑了主要的交通基础设施材料和结构(沥青路面,隧道衬砌和混凝土材料结构),选取GAPS384、Tunnel200和DeepCrack数据集进行实验。结果表明,通过扩增数据集训练的U-Net模型检测精度更高,更易于跳出局部最优解。相比于DCGAN方法,本方法能够控制裂缝的形态且保证骨架的连续性,可以有针对地提高原有裂缝数据集的形态多样性,使得检测模型在特定交通基础设施场景下具有更好的泛化能力。

关键词: 土木工程, 交通基础设施, 图像生成, 裂缝检测, 生成对抗网络

Abstract:

The crack detection model for transportation infrastructure based on deep learning relies on large-scale data for training. To address the problem of limited availability of diverse crack samples in specific transportation facility scenarios, this paper proposes a transportation infrastructure crack image generation method based on Pix2pixHD. Firstly, the Pix2pixHD model is used to establish a spatial mapping relationship between real crack images and annotated labels based on a small amount of collected crack image data. Secondly, the objects in the label domain are edited to generate crack contours representing various forms, using methods such as label transfer from other datasets, manual editing, morphological dilation operations, and random superimposition operations. Finally, the edited label domain is transformed back to the image domain using the Pix2pixHD model, achieving adaptive augmentation of the transportation infrastructure crack dataset. Experimental results on the GAPS384, Tunnel200, and DeepCrack datasets demonstrate that the U-Net model trained with augmented data achieves higher detection accuracy and is more likely to avoid local optima. Compared to the DCGAN method, this approach exhibits better visual effects and FID quantification metric, thereby improving the generalization capability of the crack detection model in specific transportation infrastructure scenarios.

Key words: civil engineering, transportation infrastructure, image generation, crack detection, generative adversarial network

中图分类号: