华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (9): 81-92.doi: 10.12141/j.issn.1000-565X.230582

• 机械工程 • 上一篇    下一篇

不确定性结构的非高斯模态参数模拟方法

平梦浩(), 张文华, 唐亮()   

  1. 北京林业大学 工学院,北京 100083
  • 收稿日期:2023-09-14 出版日期:2024-09-25 发布日期:2024-01-26
  • 通信作者: 唐亮(1982—),女,博士,教授,主要从事人体损伤生物力学、智能驾驶汽车安全性、汽车结构耐撞性与轻量化等研究。 E-mail:happyliang@bjfu.edu.cn
  • 作者简介:平梦浩(1992—),男,博士,讲师,主要从事结构不确定性度量、贝叶斯估计方法等研究。E-mail: pingmenghao@bjfu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51975057);北京林业大学中央高校基本科研业务费专项资金资助项目(BLX202228)

Non-Gaussian Modal Parameters Simulation Methods for Uncertainty Structures

PING Menghao(), ZHANG Wenhua, TANG Liang()   

  1. Institute of Technology,Beijing Forestry University,Beijing 100083,China
  • Received:2023-09-14 Online:2024-09-25 Published:2024-01-26
  • Contact: 唐亮(1982—),女,博士,教授,主要从事人体损伤生物力学、智能驾驶汽车安全性、汽车结构耐撞性与轻量化等研究。 E-mail:happyliang@bjfu.edu.cn
  • About author:平梦浩(1992—),男,博士,讲师,主要从事结构不确定性度量、贝叶斯估计方法等研究。E-mail: pingmenghao@bjfu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51975057)

摘要:

结构不确定性广泛存在于实际工程问题中,考虑不确定因素对模态参数的影响对提升结构动力学分析的鲁棒性具有重要意义。在涉及不确定性线性结构随机模态参数求解或估计的方法中,模态参数通常被视为服从高斯分布,它们之间的相关性也通常被忽略。然而,随机模态参数的高斯和独立性假设会造成模拟误差,影响结构动力学响应预测的鲁棒性。针对这一问题,分别针对离散结构和连续结构提出了两种随机模态参数模拟方法。对于离散结构,由于振型是离散的,随机模态参数被视为相关随机变量,根据它们的统计特征,采用相关多项式混沌展开方法(c-PCE),将其表示为独立标准高斯变量的函数,可以实现非高斯性和相关性的模拟;对于连续结构,随机振型被视为相关随机场,利用改进的正交级数展开法可以将其表示为离散随机振型的函数,将它们与随机固有频率相结合,构造一组新的相关随机变量,采用c-PCE,可以实现利用标准高斯变量模拟振型随机场和随机频率。最后,分别以桁架结构和平板结构为例,考虑由材料参数波动引起的模态参数的非高斯性,利用提出的随机模态参数模拟方法,可以准确模拟模态参数的统计特征,进一步还能够预测结构的随机响应。证明了提出的方法对随机模态参数的模拟精度,以及考虑参数相关性的必要性。

关键词: 随机模态参数, 相关变量, 随机场, 多项式混沌展开, 正交级数展开

Abstract:

Structural uncertainty is commonly encountered in practical structural engineering problems. Considering the impact of uncertain factors on modal parameters is of significant importance in enhancing the robustness of structural dynamic analysis. In most developed methods involving the solution or estimation of random modal parameters for linear structures, the modal parameters are usually seen as Gaussian variables, and correlation among them is not getting much attention. However, the Gaussian and independence assumptions of the random mode parameters create simulation errors, affecting the robustness of the structural dynamics response predictions. To address this issue, this study proposed two approaches for simulating random modal parameters of respective discrete and continuous structures. For a discrete structure, its mode shapes are discrete. The random modal parameters are treated as correlated random variables. The correlated polynomial chaos expansion (c-PCE) method was applied to simulate non-Gaussianity and correlation based on the statistics of modal parameters. For continuous structures, random mode shapes are seen as correlated random fields. They can be represented in terms of correlated random variables by using the improved orthogonal series expansion method. Then they were combined with random natural frequencies to constitute a set of correlation variables, which are enabled to be simulated using standard Gaussian variables by utilizing the c-PCE. Finally, taking the truss structure and the plate structure respectively as examples, considering the non-Gaussianism of the modal parameters caused by the fluctuation of material parameters, the proposed random mode parameters can accurately simulate the statistical characteristics of the modal parameters, and further predict the random response of the structure. The simulation results verify the simulation accuracy of the proposed method for the random mode parameters and the necessity to consider the parameter correlations.

Key words: random modal parameter, correlated variable, random field, polynomial chaos expansion, orthogonal series expansion

中图分类号: