华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (7): 9-18.doi: 10.12141/j.issn.1000-565X.230586

• 电子、通信与自动控制 • 上一篇    下一篇

基于多频带路径签名特征的癫痫脑电图信号分类方法

郭礼华1(), 杨辉1, 吴倩仪2, 茅海峰3   

  1. 1.华南理工大学 电子与信息学院, 广东 广州 510640
    2.广州医科大学附属第二医院 神经内科, 广东 广州 510260
    3.广州医科大学附属第二医院 急诊科, 广东 广州 510260
  • 收稿日期:2023-09-18 出版日期:2024-07-25 发布日期:2023-12-27
  • 作者简介:郭礼华(1978—),男,博士,副教授,主要从事医学信息处理和图像分类研究。
  • 基金资助:
    广东省基础与应用基础研究基金资助项目(2022A1515011549)

Epilepsy Electroencephalogram Signal Classification Method Based on Multi-Band Path Signature Features

GUO Lihua1(), YANG Hui1, WU Qianyi2, MAO Haifeng3   

  1. 1.School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
    2.Department of Neurology,the Second Affiliated Hospital of Guangzhou Medical University,Guangzhou 510260,Guangdong,China
    3.Emergency Department,the Second Affiliated Hospital of Guangzhou Medical University,Guangzhou 510260,Guangdong,China
  • Received:2023-09-18 Online:2024-07-25 Published:2023-12-27
  • About author:郭礼华(1978—),男,博士,副教授,主要从事医学信息处理和图像分类研究。
  • Supported by:
    the Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515011549)

摘要:

基于脑电图(EEG)信号的癫痫自动检测对癫痫的临床诊断和治疗有很大的帮助。由于大部分癫痫识别算法忽略了EEG信号的时序关系,为此,文中提出了一种基于多频带路径签名特征的癫痫EEG信号分类方法。此方法首先将EEG信号分解成5个不同频段的频带信号,再通过路径签名算法进行特征提取,然后采用局部主成分分析去除特征相关性并进行特征融合,最后将融合特征送入集成分类器中进行预测分类。由于路径签名可以更深入地挖掘EEG信号的相关关系,结合局部主成分分析后,文中方法可以获取更有鉴别性的癫痫分类特征。分别在时长超过2 000 s癫痫发作片段的本地医院私有数据集和开源的CHB-MIT癫痫数据集上,选用10折交叉进行实验验证,结果表明:在私有数据集上,文中方法的平均分类准确率达到97.25%,比经典的基于经验模态分解(EMD)的方法提高了3.44个百分点,比最新的基于长短期记忆网络(LSTM)+卷积神经网络(CNN)的方法提高了1.35个百分点;在CHB-MIT数据集上,文中方法的平均分类准确率达到98.11%,比经典的基于EMD的方法提高了5.20个百分点,比最新的基于LSTM+CNN的方法提高了2.64个百分点;在两个数据集上文中方法的分类准确率均优于其他对比方法。

关键词: 脑电图分析, 癫痫发作分类, 路径签名, 信号分析

Abstract:

Automatic detection of epilepsy based on electroencephalogram (EEG) signals is greatly helpful for clinical diagnosis and treatment of epilepsy. Most epilepsy detection algorithms ignore the temporal relation of EEG signals, therefore, this paper proposed an epilepsy EEG signal classification method based on multi-band path signature features. Firstly, EEG signals were decomposed into five frequency bands. Secondly, features were extracted using the path signature (PS) algorithm. Thirdly, features were fused after local principal component analysis (LPCA) removed the feature’s correlation. Finally, an ensemble classifier was used to predict epilepsy. Since the path signature can dig into the correlation of EEG signals, combined with local principal component analysis, the method proposed in the paper can obtain more discriminative epilepsy classification features.The comparative experiments of 10-fold cross-validation were conducted to validate this method on two datasets, i.e., the private dataset from a local hospital with more than 2 000 seconds of segments and the CHB-MIT epilepsy dataset. The results show that the average classification accuracy of the method reached 97.25% on the private dataset, which is higher than those of the classical EMD (Empirical Mode Decomposition) method and the up-to-date LSTM (Long Short-term Memory Network) + CNN (Convolutional Neural Network) method by 3.44 and 1.35 percentage points respectively. Moreover, the proposed method can achieve an average classification accuracy of 98.11% on the CHB-MIT dataset, which is higher than those of the classical EMD method and the up-to-date LSTM+CNN method by 5.20 and 2.64 percentage points respectively, and this method achieves the best classification accuracy than other methods on both datasets.

Key words: electroencephalogram analysis, classification of epileptic seizure, path signature, signal analysis

中图分类号: