1 |
国家统计局 .中国统计年鉴—2021[M].北京:中国统计出版社,2021.
|
2 |
ROLISON J J, REGEV S, MOUTARI S,et al .What are the factors that contribute to road accidents?An assessment of law enforcement views,ordinary drivers’ opinions,and road accident records[J].Accident Analysis & Prevention,2018,115:11-24.
|
3 |
FORT E, POURCEL L, DAVAZIES P,et al .Road accidents,an occupational risk[J].Safety Science,2010,48(10):1412-1420.
|
4 |
马丽媛,王增武,樊静,等 .《中国心血管健康与疾病报告2021》概要[J].中国介入心脏病学杂志,2022,30(7):481-496.
|
|
MA Li-yuan, WANG Zeng-wu, FAN Jing,et al .Summary of China cardiovascular health and disease report 2021[J].Chinese Journal of Interventional Cardiology,2022,30(7):481-496.
|
5 |
CHERIF F H, CHERIF L H, BENABDELLAH M,et al .Monitoring driver health status in real time[J].The Review of Scientific Instruments,2020,91(3):035110.
|
6 |
KOO C H, ZHU H, TSANG Y T,et .al.A portable system for multiple parameters monitoring:towards assessment of health conditions and stress level in the automotive field[C]∥ Proceedings of the AEIT International Conference of Electrical and Electronic Technologies for Automotive.Turin:[s.n.],2019.
|
7 |
LEE J-C, LIU H .Development of a real-time driver health detection system using a smart steering wheel[J].International Journal of Prognostics and Health Management,2018,9:1-5.
|
8 |
于露,任晓阳,魏恒建,等 .基于PPG信号的驾驶员生理参数监测[J].大连交通大学学报,2023,44(2):22-27.
|
|
YU Lu, REN Xiaoyang, WEI Hengjian,et al .Driver physiological parameter monitoring based on PPG signal[J].Journal of Dalian Jiaotong University,2023,44(2):22-27.
|
9 |
HAYASHI H, KAMEZAKI M, SUGANO S .Toward health-related accident prevention:symptom detection and intervention based on driver monitoring and verbal interaction[J].IEEE Open Journal of Intelligent Transportation Systems,2021,2:240-253.
|
10 |
LIANG Y, LIU G, CHEN Z,et al .Figshare[EB/OL].[2022-05-04]. .
|
11 |
MOODY G B, MARK R G .A database to support development and evaluation of intelligent intensive care monitoring[C]∥Proceedings of the Conference on Computers in Cardiology 1996.Indianapolis:IEEE,1996:657-660.
|
12 |
KACHUEE M, KIANI M M, MOHAMMADZADE H,et al .Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time[C]∥ Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’15).[S. l.]:IEEE,2015.
|
13 |
SOREL J E, HEISS G, TYROLER H A,et al .Black-white differences in blood pressure:the authors reply[J].Epidemiology,1992,3(3):274-275.
|
14 |
吴金奖,陈建新,田峰 .可穿戴心电信号监测中运动伪影消除技术研究[J].信号处理,2014,30(11):1388-1393.
|
|
WU Jin-jiang, CHEN Jian-xin, TIAN Feng .Research on motion artifacts eliminating for wearable electrocardiogram signal monitoring[J].Journal of Signal Processing,2014,30(11):1388-1393.
|
15 |
徐海津 .抗运动伪影下基于PPG的心率估计方法研究与应用[D].成都:电子科技大学,2018.
|
16 |
於鹏,严良文,余越,等 .五点三次平滑算法在PPG信号降噪中的应用[J].计量与测试技术,2020,47(6):47-50,53.
|
|
YU Peng, YAN Liangwen, YU Yue,et al .The application of five-point cubic smoothing algorithm in noise reduction of PPG signal[J].Metrology & Measurement Technique,2020,47(6):47-50,53.
|
17 |
李苗,侯柏成,党豪 .基于深度卷积神经网络的ECG信号分类研究[J].电脑编程技巧与维护,2023(1):131-133.
|
|
LI Miao, HOU Bo-cheng, DANG Hao .Research on ECG signal classification based on deep convolutional neural network[J].Computer Programming Skills and Maintenance,2023(1):131-133.
|
18 |
ELGENDI M .Optimal signal quality index for photoplethysmogram signals[J].Bioengineering,2016,3:3040021/1-15.
|
19 |
LIANG Y, ELGENDI M, CHEN Z,et al .An optimal filter for short photoplethysmogram signals[J].Scientific Data,2018,5:180076.
|
20 |
LIANG Y,HEN Z, LIU G,et al .A new,short-recorded photoplethysmogram dataset for blood pressure monitoring in China[J].Scientific Data,2018,5:180020.
|
21 |
宋海亮 .基于CAN的汽车制动测试系统的研究与实现[D].上海:上海交通大学,2011.
|
22 |
于萍 .用小波技术实现非平稳信号的处理[D].青岛:中国石油大学(华东),2012.
|
23 |
陈慧慧 .自动机运动规律图像数据处理方法研究[D].太原:中北大学,2010.
|
24 |
杨依,方亮,岳宏,等 .脉搏波传导速度、踝臂指数及体脂肪率在心血管风险评价中的应用[J].航空航天医学杂志,2015,26(4):393-395.
|
|
YANG Yi, FANG Liang, YUE Hong,et al .Pulse wave conduction velocity,ankle arm index and body fat rate in the application of cardiovascular risk assessment[J].Journal of Aerospace Medicine,2015,26(4):393-395.
|
25 |
宋晓瑞,乔爱科 .基于脉搏波检测技术的心血管健康评测[J].医用生物力学,2015,30(5):468-473.
|
|
SONG Xiao-rui, QIAO Ai-ke .Evaluation of cardiovascular health based on pulse wave detection technology[J].Journal of Medical Biomechanics,2015,30(5):468-473.
|
26 |
齐咏生,樊佶,李永亭,等 .基于增强型形态学滤波的风电机组轴承故障诊断方法[J].振动与冲击,2021,40(4):212-220.
|
|
QI Yongsheng, FAN Ji, LI Yongting,et al .A fault diagnosis method of wind turbine bearings based on an enhanced morphological filter[J].Journal of Vibration and Shock,2021,40(4):212-220..
|
27 |
罗通元 .风险预警技术在往复泵系统中的应用[D].北京:中国石油大学(北京),2016.
|
28 |
李祝强 .基于局部线性嵌入和支持向量机的滚动轴承性能退化评估研究[D].哈尔滨:哈尔滨理工大学,2014.
|
29 |
王海龙,李云赫,赵岩 . k值优化VMD-小波包分析联合降噪方法在隧道爆破信号中的应用[J].爆破器材,2021,50(5):50-57.
|
|
WANG Hailong, LI Yunhe, ZHAO Yan . k-value optimization of VMD-wavelet packet analysis joint noise reduction method in tunnel blasting signal[J].Blasting Equipment,2021,50(5):50-57.
|
30 |
吴忠强,毛志华,王正,等 .基于极限学习机的浅海水深遥感反演研究[J].海洋测绘,2019,39(3):11-15.
|
|
WU Zhongqiang, MAO Zhihua, WANG Zheng,et al .Research on remote inversion of shallow sea bathymetry based on extreme learning machine[J].Hydrographic Surveying and Charting,2019,39(3):11-15.
|
31 |
江晗菁 .基于SSDA-HELM-SOFTMAX的农业投入品在线分类预测方法研究与实现[D].广州:仲恺农业工程学院,2020.
|
32 |
颜学龙,马润平 .基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11):1911-1918.
|
|
YAN Xue-long, MA Run-ping .Fault diagnosis of analog circuits based on deep limit learning machine[J].Computer Engineering and Science,2019,41(11):1911-1918.
|
33 |
马润平 .基于深度极限学习机的模拟电路故障诊断研究[D].桂林:桂林电子科技大学,2020.
|
34 |
LU X, ZOU H, ZHOU H,et al .Robust extreme learning machine with its application to indoor positioning[J].IEEE Transactions on Cybernetics,2015,46(1):194-205.
|
35 |
SHI L C, LU B L .EEG-based vigilance estimation using extreme learning machines[J].Neurocomputing,2013,102:135-143.
|
36 |
张文帅,王占刚 .基于改进麻雀算法优化深度极限学习机的缺失数据预测[J].电子测量技术,2022,45(15):63-67.
|
|
ZHANG Wenshuai, WANG Zhangang .Missing data prediction based on improved sparrow algorithm optimized deep extreme learning machine[J].Electronic Measurement Technology,2022,45(15):63-67.
|
37 |
CHAWLA N V, BOWYER K W, HALL L O,et al .SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16(1):321-357.
|