华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (6): 60-70.doi: 10.12141/j.issn.1000-565X.210389

所属专题: 2022年电子、通信与自动控制

• 电子、通信与自动控制 • 上一篇    下一篇

面向嵌入式设备的扶梯客流量实时统计方法

杜启亮1,2 向照夷田联房1,3   

  1. 1. 华南理工大学
    2. 华南理工大学自动化科学与工程学院
  • 收稿日期:2021-06-16 修回日期:2021-10-13 出版日期:2022-06-25 发布日期:2021-10-22
  • 通信作者: 杜启亮 (1980-),男,博士,副研究员,主要从事机器视觉研究 E-mail:qldu@ scut. edu. cn
  • 作者简介:杜启亮 (1980-),男,博士,副研究员,主要从事机器视觉研究
  • 基金资助:
    广东省自然资源厅-海上风电专项;广东省重点研发计划-新一代人工智能;广东省重点研发计划-精准农业;中央高校基本科研业务费专项资金资助;广州市产业技术重大攻关计划;华南理工大学研究生教育改革项目

Real Time Statistics Method of Escalator Passenger Flow for Embedded Devices

DU Qiliang1,2 XIANG ZhaoyiTIAN Lianfang1,3   

  1. 1. School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,
    China; 2. Key Laboratory of Autonomous Systems and Network Control of the Ministry of Education,South China University
    of Technology,Guangzhou 510640,Guangdong,China; 3. Zhuhai Institute of Modern Industrial Innovation,
    South China University of Technology,Zhuhai 519175,Guangdong,China
  • Received:2021-06-16 Revised:2021-10-13 Online:2022-06-25 Published:2021-10-22
  • Contact: 杜启亮 (1980-),男,博士,副研究员,主要从事机器视觉研究 E-mail:qldu@ scut. edu. cn
  • About author:杜启亮 (1980-),男,博士,副研究员,主要从事机器视觉研究
  • Supported by:
    Supported by the Key-Area Research and Development Program of Guangdong Province (2019B020214001,
    2018B010109001)

摘要: 针对传统客流量统计算法检测精度与速度难以平衡的问题,设计了一种面向嵌入式设备的扶梯客流量实时统计方法.首先,提出无失真缩放方法,以保持测试图像与训练样本的信息一致性,避免影响检测模型性能;此外,将YOLOv4-tiny检测模型通过降维模块、分组卷积进行优化,进而提出YOLOv4-tiny-fast网络,其在保证乘客检测准确率无损失的情况下大幅减少参数量,提高推理速度;最后,提出了一种结合自定义优化矩阵及遮挡处理的匹配算法,以较少的计算量解决了乘客跟踪问题.为证明方法的有效性,以实际环境中的手扶电梯出入口视频进行实验,结果表明,在嵌入式设备平台,所提算法的客流量统计平均准确率达到96.66%,且平均检测速度达到25帧/s,优于已有算法.

关键词: 客流量统计, 嵌入式设备, 目标检测, 目标跟踪

Abstract: In order to address the problem that the accuracy and speed of the traditional statistical calculation method are difficult to balance, we design a real time method of escalator passenger flow statistics for embedded devices. Firstly, a distortion-free scaling method is proposed to maintain the consistency of information between the test and the training sample to avoid affecting the performance of the detection model; furthermore, the YOLOv4-tiny detection model is optimized by a dimensionality reduction module and group convolution, and then a YOLOv4-tiny-fast network is proposed, which significantly reduces the number of parameters and improves the inference speed while ensuring no loss of passenger detection accuracy; finally, a matching algorithm combining custom optimization matrix and occlusion processing is proposed to solve the passenger tracking problem with less computational effort. To demonstrate the effectiveness of the method, experiments are conducted with video of escalator entrances and exits in a real environment. The results show that the proposed algorithm achieves an average accuracy of 96.66% in passenger flow statistics on the embedded device platform, and the average detection speed reaches 25 frames/s, which is better than existing algorithms.

Key words: passenger flow statistics, embedded devices, object detection, object tracking

中图分类号: