华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (3): 9-20,37.doi: 10.12141/j.issn.1000-565X.210083

所属专题: 2022年交通运输工程

• 交通运输工程 • 上一篇    下一篇

考虑土地利用的城市公共自行车需求预测

朱才华 李岩 孙晓黎 徐金华 付泽坤   

  1. 长安大学 运输工程学院,陕西 西安 710064
  • 收稿日期:2021-02-22 修回日期:2021-09-12 出版日期:2022-03-25 发布日期:2022-03-01
  • 通信作者: 李岩(1983-),男,博士,教授,主要从事交通控制、智能交通、交通安全研究。 E-mail:lyan@chd.edu.cn
  • 作者简介:朱才华(1995-),男,博士生,主要从事交通控制、城市公共交通规划研究。E-mail:zhucaihua@chd.edu.cn
  • 基金资助:
    国家重点研究计划资助项目(2017YFC0803906);国家自然科学基金资助项目(51408049);陕西省自然科学基础研究计划项目(2020JM-237);中央高校基本科研业务费专项资金——长安大学优秀博士学位论文培育资助项目(300102342725)

Traffic Demand Prediction of Urban Public Bicycles with the Consideration of Land Use

ZHU Caihua LI Yan SUN Xiaoli XU Jinhua FU Zekun   

  1. College of Transportation Engineering, Chang‘an University, Xi'an 710064, Shaanxi,China
  • Received:2021-02-22 Revised:2021-09-12 Online:2022-03-25 Published:2022-03-01
  • Contact: 李岩(1983-),男,博士,教授,主要从事交通控制、智能交通、交通安全研究。 E-mail:lyan@chd.edu.cn
  • About author:朱才华(1995-),男,博士生,主要从事交通控制、城市公共交通规划研究。E-mail:zhucaihua@chd.edu.cn
  • Supported by:
    Supported by the National Key R&D Program of China(2017YFC0803906) ,the National Natural Science Foundation of China(51408049)and the Natural Science Basic Research Program of Shaanxi Province(2020JM-237)

摘要: 针对新建公共自行车站点无法根据历史数据对未来使用需求进行预测的问题,提出了一种修正的地理加权回归模型探索单位时间节点需求生成与可达性间的关系。改进的模型以路网距离作为限制条件,获取基于泰森多边形的站点吸引重叠区域。同时,为减小用地区位导致的预测误差,改进的模型增添用地混合度和建筑强度作为解释变量。利用所提出的模型对西安市公共自行车系统运营数据分析的结果表明,各类用地最大需求生成率集中在早晚高峰时段,并在以天为周期的循环中具有各异的变化规律。公共自行车系统的需求生成率随着起点/终点与目标停靠站点之间距离增大而逐渐减小,表现为早高峰时期的线性衰减,晚高峰时期的指数衰减以及非高峰时期的立方衰减。研究成果可用于确定西安市新建公共自行车站点位置和规模,并预测其相应的使用需求率。

关键词: 需求预测, 可达性, 泰森多边形, 改进的地理加权回归模型, 公共自行车系统, 土地利用

Abstract: Aiming at the problem that newly built public bicycle stations cannot predict future use demand based on historical data, a modified geographically weighted regression model was proposed to explore the relationship between demand generation and accessibility at unit time nodes. The modified model took road network distance as the constraints to access the overlapping attraction area of docking stations based on Thiessen Polygon. Meantime, in order to reduce the prediction error caused by land location, the modified model added land mix degree and building strength as explanatory variables.The proposed model was utilized to analyze data from the docked bike-sharing system in Xian. The results indicate that the production rates of various land types are found to be maximum in the morning and evening peak hours with variable patterns in daily change. The production rate of bike-sharing system will gradually decrease as the distance between origin/destination and target docking stations increases, showing linear attenuation in the morning peak period, exponential attenuation in the evening peak period and cubic attenuation in the non-peak period. The findings can be utilized to determine the location and scale of new docking stations of bike-sharing system in Xian and predict relative usage demand rates.

Key words: demand prediction, accessibility, Thiessen Polygon, revised geographically weighted regression mo-del, bike-sharing system, land use

中图分类号: