华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (2): 111-120.doi: 10.12141/j.issn.1000-565X.210504

所属专题: 2022年能源、动力与电气工程

• 能源、动力与电气工程 • 上一篇    下一篇

回热型S-CO2布雷顿循环火用效率分析与优化

夏少军,金晴龙,吴志祥   

  1. 海军工程大学 动力工程学院,湖北 武汉 430033
  • 收稿日期:2021-08-09 修回日期:2021-09-17 出版日期:2022-02-25 发布日期:2022-02-01
  • 通信作者: 夏少军(1986-),男,博士,副教授,主要从事能源利用与能量转换的相关理论及装置研究。E-mail:shaojunxia_2021@163.com E-mail:shaojunxia_2021@163.com
  • 作者简介:夏少军(1986-),男,博士,副教授,主要从事能源利用与能量转换的相关理论及装置研究。E-mail:shaojunxia_2021@163.com
  • 基金资助:
    国家自然科学基金资助项目(51976235,51606218,51576207)|湖北省自然科学基金资助项目(2018CFB708)

Exergy efficiency analyses and optimization of regenerative S-CO2 Brayton cycle

XIA Shaojun JIN Qinglong WU Zhixiang   

  1. College of Power Engineering,Naval University of Engineering,Wuhan 430033,Hubei,China
  • Received:2021-08-09 Revised:2021-09-17 Online:2022-02-25 Published:2022-02-01
  • Contact: 夏少军(1986-),男,博士,副教授,主要从事能源利用与能量转换的相关理论及装置研究。E-mail:shaojunxia_2021@163.com E-mail:shaojunxia_2021@163.com
  • About author:夏少军(1986-),男,博士,副教授,主要从事能源利用与能量转换的相关理论及装置研究。E-mail:shaojunxia_2021@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(51976235,51606218,51576207) and the Natural Science Foundation of Hubei Province,China(2018CFB708)

摘要: 回热型超临界二氧化碳布雷顿循环在燃气轮机余热回收利用领域具有较大的发展和应用潜力,对其开展性能分析与优化具有重要意义。文中应用有限时间热力学理论,建立了变温热源条件下存在有限温差传热、不可逆压缩、不可逆膨胀等不可逆因素的回热型超临界二氧化碳布雷顿循环模型,分析了工质质量流率、压缩机与透平效率、总热导率对循环效率与循环压比特性关系的影响,然后在总热导率一定的条件下以效率最大为目标,对加热器、冷却器和回热器的热导率分配比以及循环压比、工质质量流率进行优化。结果表明:在文中取值范围内,经优化后的效率可比初始设计点提高37.96%。文中还给出了不同工质质量流率下效率达到最大时所对应的设计参数。

关键词: 回热型超临界二氧化碳布雷顿循环, 有限时间热力学, 效率

Abstract: It is of great significance to perform performance analysis and optimization of regenerative supercritical carbon dioxide (S-CO2) Brayton cycle because it has great development and application potential in the field of gas turbines waste heat recovery and utilization. In this paper, the theory of finite-time thermodynamics is used to establish a regenerative S-CO2 Brayton cycle model with various irreversible factors including the heat transfer with finite temperature difference, the irreversible compression and the irreversible expansion under the condition of variable-temperature heat source. Then, the influences of working fluids mass flow rate, turbine and compressor efficiencies, and total heat exchanger inventory on the characteristic relationship between the exergy efficiency and the cycle pressure ratio are analyzed. Finally, by choosing the maximum exergy efficiency at fixed total heat exchanger inventory as the optimization objective, the heat conductance distribution ratios of the heater, the cooler and rege-nerator, as well as the mass flow rate of the working fluid and the cycle pressure ratio, are optimized. The results show that, within the parameter value ranges chosen in this paper, the optimized exergy efficiency increases by 37.96%, as compared with the initial design value. The design parameters corresponding to the maximum exergy efficiencies at different working fluid mass flow rates are also given. 

Key words: regenerative supercritical carbon dioxide Brayton cycle, finite-time thermodynamics, exergy efficiency

中图分类号: