华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (11): 106-115,134.doi: 10.12141/j.issn.1000-565X.200593
所属专题: 2021年电子、通信与自动控制
张瑞峰 白金桐 关欣† 李锵
ZHANG Ruifeng BAI Jintong GUAN Xin LI Qiang
摘要: 音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离模型的表示能力和计算效率,在目前时域分离性能最优的Demucs模型基础上进行改进,提出了一种端对端网络Unet-SE-BiSRU。该模型在广义编码层和解码层中引入了注意力机制,采用挤压-激励块(SE)根据待分离音频的种类有选择地提取特征;在一维卷积后增加组归一化,以应对在学习过程中可能出现的梯度爆炸或梯度消失问题;将双向长短期记忆网络改进为双向简单循环单元(BiSRU),进一步提高了学习的并行性,且降低了模型参数量。实验结果表明,改进后的网络模型的信噪比指标提升了0.34dB,在目前检索到的文献的时域端对端方法中取得了最好的分离性能,并且训练时间缩短为源模型的2/5。
中图分类号: