华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (3): 25-33.doi: 10.12141/j.issn.1000-565X.200296

所属专题: 2021年机械工程

• 机械工程 • 上一篇    下一篇

泵阀并联电液位置伺服系统的智能控制方法

汪成文1,2,3 郭新平1† 张震阳1 刘华1   

  1. 1. 太原理工大学 机械与运载工程学院,山西 太原 030024; 2. 太原理工大学 新型传感器与智能控制教育部重点实验室, 山西 太原 030024; 3. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310058
  • 收稿日期:2020-06-08 修回日期:2020-07-20 出版日期:2021-03-25 发布日期:2021-03-01
  • 通信作者: 郭新平(1994-),男,硕士生,主要从事电液伺服控制研究。 E-mail:15561433629@163.com
  • 作者简介:汪成文(1982-),男,博士,副教授,主要从事电液伺服控制研究
  • 基金资助:
    山西省重点研发计划项目 ( 201903D121069) ; 山西省回国留学人员科研教研资助项目 ( HGKY2019016) ; 流体动力与机电系统国家重点实验室开放基金资助项目 ( GZKF-201720)

Intelligent Control Method for Pump-Valve Parallel Electro-Hydraulic Position Servo System

WANG Chengwen1,2,3  GUO Xinping1  ZHANG Zhenyang1  LIU Hua1   

  1. 1. College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China; 2. Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China; 3. The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University,Hangzhou 310058,Zhejiang,China
  • Received:2020-06-08 Revised:2020-07-20 Online:2021-03-25 Published:2021-03-01
  • Contact: 郭新平(1994-),男,硕士生,主要从事电液伺服控制研究。 E-mail:15561433629@163.com
  • About author:汪成文(1982-),男,博士,副教授,主要从事电液伺服控制研究
  • Supported by:
    Supported by the Key Research and Development Plan of Shanxi Province ( 201903D121069)

摘要: 结合阀控系统响应速度快和泵控系统能量效率高的优势,提出了一种泵阀并联 系统,并研究了该系统的智能控制方法。首先针对泵阀并联系统中的泵控子系统设计了 可以实现权值自适应调节的单神经元 PID 控制器,然后针对泵阀并联系统中阀控子系统 的参数不确定性和外负载干扰问题设计了 RBF 神经网络滑模控制器,并利用 Lyapunov 函数证明了闭环系统的稳定性。最后搭建了泵阀并联电液位置伺服系统的 Matlab /Simulink 和 AMESim 联合仿真模型。仿真结果表明,泵控子系统的单神经元 PID 控制器相比 于传统 PID 控制器具有更好的转速跟踪控制性能,阀控子系统的 RBF 神经网络滑模控 制器相比于传统 PID 控制器和传统滑模控制器具有更高的位置跟踪精度和更强的抗干扰 能力,所提出的泵阀并联智能控制方法有效改善了系统的控制性能。

关键词: 泵阀并联系统, 单神经元, RBF 神经网络, 滑模控制, 智能控制

Abstract: In light of the valve control system's advantages of fast response and high energy efficiency,a pumpvalve parallel electro-hydraulic position servo system was proposed,and its intelligent control method is studied. Firstly,a single neuron PID controller,which can realize the self-adaptive adjustment of the weight,is designed for the pump-controlled subsystem of the pump-valve parallel system. Secondly,a RBF ( Radial Basis Function) neural network-based sliding mode controller was designed for the valve-controlled subsystem of the pump-valve parallel system. The Lyapunov function was designed to prove the stability of the closed-loop system. Finally,the co-simulation was conducted by using Matlab /Simulink and AMESim. The co-simulation results show that the single neuron PID controller of the pump-controlled subsystem has better speed tracking control performance than the traditional PID controller. The RBF neural network-based sliding mode controller of the valve-controlled subsystem has better position tracking accuracy and stronger anti-interference ability than the traditional PID controller. The proposed intelligent control method can significantly improve the control performance of the pump-valve parallel system.

Key words: pump-valve parallel system, single neuron, RBF neural network, sliding mode control, intelligent control

中图分类号: