华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (8): 49-55.doi: 10.12141/j.issn.1000-565X.190515

• 电子、通信与自动控制 • 上一篇    下一篇

基于多级深度特征与随机游走的显著性检测

崔冬1,2 王明1,2 李刚1,2† 顾广华1,2 李海涛1   

  1. 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004; 2. 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
  • 收稿日期:2019-08-10 修回日期:2020-04-10 出版日期:2020-08-25 发布日期:2020-08-01
  • 通信作者: 李刚(1979-),男,副教授,主要从事图像语义分类、模式识别、最佳离散信号设计研究。 E-mail:lg@ysu.edu.cn
  • 作者简介:崔冬(1978-),女,教授,主要从事信息处理研究。E-mail:cuidong@ysu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 (61303128); 河北省自然科学基金资助项目 (F2017203169,F2018203239); 河北省科技计划项目 (18210336)

Saliency Detection Based on Multi-Level Deep Features and Random Walk

CUI Dong1,2 WANG Ming1,2 LI Gang1,2 GU Guanghua1,2 LI Haitao1   

  1. 1. School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China; 2. Hebei Provincial Key Laboratory of Information Transmission and Signal Processing,Qinhuangdao 066004,Hebei,China
  • Received:2019-08-10 Revised:2020-04-10 Online:2020-08-25 Published:2020-08-01
  • Contact: 李刚(1979-),男,副教授,主要从事图像语义分类、模式识别、最佳离散信号设计研究。 E-mail:lg@ysu.edu.cn
  • About author:崔冬(1978-),女,教授,主要从事信息处理研究。E-mail:cuidong@ysu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (61303128),the Natural Science Foundation of Hebei Province ( F2017203169,F2018203239 ) and the Science and Technology Planning Project of Hebei Province(18210336)

摘要: 为了解决图像显著性检测中传统方法特征学习不全面、复杂场景下显著区域凸出不明显的问题,提出了一种基于多级深度特征和随机游走的显著性检测算法。首先,利用全卷积神经网络,结合深层和浅层卷积特征信息对图像进行多级卷积深度特征提取; 然后,对图像进行超像素分割,将提取的深度卷积特征分配给相应的超像素,构建特征矩阵; 最后,通过正则化随机游走排序模型生成最终的显著图。在 ECSSD 和 DUT-OMRON 数据库上的实验结果表明,与 6 种具有代表性的显著性检测算法相比,文中算法的准确性和 F 值具有一定的优势。

关键词: 显著性检测, 多级深度特征, 特征提取, 随机游走

Abstract: In order to solve the problems of incomplete feature learning and unobvious salient regions in complex scenes for the traditional saliency detection methods,a saliency detection algorithm based on multi-level deep fea-tures and random walk was proposed. Firstly,the fully convolutional networks (FCN) was used to perform multi-level convolution deep feature extraction on the image by combining the deep and shallow feature information. Se-condly,superpixels segmentation on the image was carried out and the extracted deep convolution features were assigned to the corresponding superpixels to construct a feature matrix. Finally,the final saliency map was generated by regularizing the random walk ranking model. The experimental results on the ECSSD and DUT-OMRON databases show that the proposed method has certain advantages in accuracy and F value,compared with the six representa-tive saliency detection algorithms.

Key words: saliency detection, multi-level deep features, feature extraction, random walk

中图分类号: