华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (7): 115-121.doi: 10.12141/j.issn.1000-565X.190861

• 土木建筑工程 • 上一篇    下一篇

压制生土砖强度的人工神经网络预测模型

王毅红 张建雄 兰官奇 田桥罗 张俊旗
  

  1. 长安大学 建筑工程学院,陕西 西安 710061
  • 收稿日期:2019-11-25 修回日期:2020-02-17 出版日期:2020-07-25 发布日期:2020-07-01
  • 通信作者: 王毅红(1955-),女,博士,教授,主要从事混凝土及砌体结构与工程抗震等研究。 E-mail:wangyh@chd.edu.cn
  • 作者简介:王毅红(1955-),女,博士,教授,主要从事混凝土及砌体结构与工程抗震等研究。
  • 基金资助:
    国家自然科学基金资助项目 (51478043); 陕西省重点研发计划项目 (2017SF-376)

Artificial Neural Network Prediction Model for Compressive Strength of Compacted Earth Blocks

WANG Yihong ZHANG Jianxiong LAN Guanqi TIAN Qiaoluo ZHANG Junqi#br#   

  1. School of Civil Engineering,Chang'an University,Xi'an 710061,Shaanxi,China
  • Received:2019-11-25 Revised:2020-02-17 Online:2020-07-25 Published:2020-07-01
  • Contact: 王毅红(1955-),女,博士,教授,主要从事混凝土及砌体结构与工程抗震等研究。 E-mail:wangyh@chd.edu.cn
  • About author:王毅红(1955-),女,博士,教授,主要从事混凝土及砌体结构与工程抗震等研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China (51478043) and the Key Research and Develop-ment Program of Shaanxi Province (2017SF-376)

摘要: 为了获得压制生土砖抗压强度预测模型,针对成型压力、含水率、水泥含量及高厚比对压制生土砖抗压强度的影响,基于国内外研究中的 91 组压制生土砖抗压强度试验数据,分别建立了用于预测压制生土砖抗压强度的 BP 神经网络模型和径向基(RBF) 神经网络模型,并将模型预测结果分别与试验结果及回归分析模型进行对比。结果表明: 人工神经网络模型对压制生土砖抗压强度的预测精度显著优于回归分析方法; 压制生土砖抗压强度与其配合比、成型压力及高厚比间存在复杂的非线性关系,回归分析模型不适用于解决此类复杂问题; BP 神经网络模型的整体预测效果较好,但容易陷入局部最优; RBF 神经网络模型能可靠地预测压制生土砖抗压强度,预测结果与试验结果比值的平均值为 1. 007,标准差为 0. 085,该预测模型具有较高精确度,能有效解决压制生土砖抗压强度与其影响因素间复杂的非线性关系,可为压制生土砖的配合比设计提供参考。

关键词: RBF 神经网络, BP 神经网络, 压制生土砖, 抗压强度, 回归分析模型

Abstract: A BP neural network model and a radial basis (RBF) neural network model were set up respectively to predict the compressive strength of compacted earth blocks. The prediction model for the compressive strength of compacted earth blocks was based on 91 groups of experimental research data collected under the action of multiple factors by domestic and foreign scholars,and the influence of compaction pressure,moisture content,cement con-tent and height-thickness ratio on the compressive strength of compacted earth block was considered. The neural network predicted results were compared with the predicted results of regression analysis model and the experimental values. The results show that the prediction accuracy of artificial neural network model is better than that of regres-sion analysis model. And there is a complex nonlinear relationship that the regression analysis model cannot handle between the compressive strength of the compacted earth block and its mixture ratio,compaction pressure and height-to-thickness ratio. The overall prediction effect of BP neural network model is good,but it is easy to fall in-to local optimum. RBF neural network model can reliably predict the compressive strength of compacted earth blocks. The mean value of the ratio between the predicted results and the experimental values is 1. 007,with a standard deviation of 0. 085. The prediction model has a high accuracy and can effectively solve the complex non-linear relationship between compressive strength and its influencing factors,and it can provide reference for the de-sign of mix proportion for compacted earth blocks.

Key words: RBF neural network, BP neural network, compacted earth block, compressive strength, regression analysis model

中图分类号: