华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (6): 143-150.doi: 10.12141/j.issn.1000-565X.200009

• 计算机科学与技术 • 上一篇    

基于 KPCA 和改进 K- means 的电力负荷曲线聚类方法

梁京章1 黄星舒吴丽娟2† 熊小萍1
  

  1. 1. 广西大学 电气工程学院,广西 南宁 530004; 2. 广西大学 信息网络中心,广西 南宁 530004
  • 收稿日期:2020-01-08 修回日期:2020-03-16 出版日期:2020-06-25 发布日期:2020-06-01
  • 通信作者: 吴丽娟(1982-),女,工程师,主要从事信息技术研究。 E-mail:20060092@gxu.edu.cn
  • 作者简介:梁京章(1964-),男,教授,主要从事计算机网络、智能电网研究。E-mail:liang2062@gxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目 (51867004); 赛尔网络下一代互联网技术创新项目 (NGII20171101)

Clustering Method of Power Load Profiles Based on KPCA and Improved K-means

LIANG Jingzhang1 HUANG Xingshu1 WU Lijuan2 XIONG Xiaoping1   

  1. 1. School of Electrical Engineering,Guangxi University,Nanning 530004,Guangxi,China;2. Information and Network Center,Guangxi University,Nanning 530004,Guangxi,China
  • Received:2020-01-08 Revised:2020-03-16 Online:2020-06-25 Published:2020-06-01
  • Contact: 吴丽娟(1982-),女,工程师,主要从事信息技术研究。 E-mail:20060092@gxu.edu.cn
  • About author:梁京章(1964-),男,教授,主要从事计算机网络、智能电网研究。E-mail:liang2062@gxu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (51867004)

摘要: 为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析 (KPCA)和改进 K-means 算法的电力负荷曲线聚类方法。该方法首先在划分聚类算法 K-means 基础上融入密度聚类思想,提出了融合密度思想的 K-means 算法 (DK-means 算法),并在电力负荷曲线实验集上对比分析其聚类效果; 接着在实验集上比较各种降维算法的降维聚类精度和降维速度; 最后分析 KPCA + DK-means 组合算法的降维聚类能力。结果表明,戴维森堡丁指数 (DBI) 更适合作为电力负荷曲线聚类评价指标; 以 DBI 为评价指标,与 K-means、BIRCH、DBSCAN 和 EnsClust 4 种聚类算法相比,DK-means 的聚类精度更高; 与 LLE、MDS、ISOMAP 3 种非线性降维算法相比,KPCA 的降维速度更快;KPCA + DK-means 组合算法有良好的降维聚类能力,较 DK-means 在聚类精度和聚类效率上均有提升。KPCA + DK-means 组合算法可以实现电力负荷曲线的高效降维、精确聚类,对用电行为模式的准确提取起关键技术支持作用。

关键词: 电力负荷曲线, DK-means 算法, 核主成分分析, 降维, 聚类

Abstract: A clustering method of power load profiles based on kernel principal component analysis (KPCA) and improved K-means algorithm was proposed to improve clustering accuracy of power load profiles. Firstly,a K-means algorithm based on density idea,namely,density K-means (DK-means) was proposed by combining the density clustering method with partitioning clustering algorithm K-means. And the clustering effect was comparatively ana-lyzed on the experimental set of power load profiles. Then the dimensionality reduction accuracy and speed of vari-ous dimensionality reduction algorithms were compared on the experimental set. Finally,the dimensionality reduc-tion and clustering ability of the KPCA + DK-means combination algorithm was analyzed. The results show that,firstly,Davies-Bouldin Index (DBI) is more suitable for the evaluation index of power load profiles clustering; se-condly,taking DBI as the evaluation index,the clustering accuracy of DK-means is higher than that of K-means,BIRCH,DBSCAN and EnsClust algorithms; thirdly,compared with LLE,MDS and ISOMAP,the dimensionality reduction speed of KPCA is faster; finally,the KPCA + DK-means combination algorithm has good dimensionality reduction and clustering ability,and its clustering accuracy and clustering efficiency are better than those of DK-means. In short,the KPCA + DK-means combination algorithm can achieve efficient dimensionality reduction and accurate clustering of power load profiles,thus plays a key technical role in accurately extracting information of electricity consumption behavior.

Key words: power load profile, DK-means algorithm, kernel principal component analysis (KPCA), dimensio-nality reduction, clustering

中图分类号: