华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (3): 76-82.doi: 10.12141/j.issn.1000-565X.190179

• 土木建筑工程 • 上一篇    下一篇

基于 CEEMDAN 的爆破地震波信号时频分析

孙苗1 吴立1† 袁青2 周玉纯1 马晨阳1 汪煜烽1   

  1. 1. 中国地质大学(武汉)岩土钻掘与防护教育部工程研究中心//工程学院,湖北 武汉 430074; 2. 中交第二航务工程局有限公司博士后科研工作站,湖北 武汉 430040
  • 收稿日期:2019-04-15 修回日期:2019-11-04 出版日期:2020-03-25 发布日期:2020-03-01
  • 通信作者: 吴立(1963-),男,教授,博士生导师,主要从事工程爆破和地下建筑工程理论技术研究。 E-mail:lwu@cug.edu.cn
  • 作者简介:孙苗(1993-),女,博士生,主要从事水下钻孔爆破理论研究。E-mail:2357152544@qq.com
  • 基金资助:
    国家自然科学基金资助项目(41672260)

Time-Frequency Analysis of Blasting Seismic Signal Based on CEEMDAN

SUN Miao1 WU Li1 YUAN Qing2 ZHOU Yuchun1 MA Chenyang1 WANG Yufeng1   

  1. 1. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection of the Ministry of Education∥ Faculty of Engineering, China University of Geosciences, Wuhan 430074, Hubei, China; 2. Postdoctoral Research Station, CCCC Second Harbour Engineering Co. , Ltd. , Wuhan 430040, Hubei, China
  • Received:2019-04-15 Revised:2019-11-04 Online:2020-03-25 Published:2020-03-01
  • Contact: 吴立(1963-),男,教授,博士生导师,主要从事工程爆破和地下建筑工程理论技术研究。 E-mail:lwu@cug.edu.cn
  • About author:孙苗(1993-),女,博士生,主要从事水下钻孔爆破理论研究。E-mail:2357152544@qq.com
  • Supported by:
    Supported by the National Natrual Science Foundation of China (41672260)

摘要: 爆破监测信号多为含噪信号,噪声会使经验模态分解(EMD)的结果产生严 重的模态混淆,使用改进算法 EEMD 对模态混淆有一定的抑制作用但效果并不明显。 为此本研究将使用自适应补充集合经验模态分解(CEEMDAN)来处理含噪信号。比较 EMD、EEMD、 CEEMDAN对仿真信号的分解结果,计算 EMD、EEMD、 CEEMDAN 得 到的 IMF 的排列熵值,对 EMD、EEMD CEEMDAN 的分解结果进行 Hilbert 变换,并比 较三者时频谱的分辨率。最后将 CEEMDAN 用于水下钻孔爆破地震波时频分析中,结果 表明: CEEMDAN 不仅对模态混淆具有一定的抑制作用,且其分解结果经过 Hilbert 变 换得到的时频谱在时域和频域上都具有较高的分辨率。

关键词: 经验模态分解, 自适应补充集合经验模态分解, 模态混淆, 排列熵

Abstract: Blasting monitoring signals are mostly noisy signals, and nosie can cause serious mode confusion in empirical mode decomposition (EMD) results. The improved EEMD algorithm can restrain mode confusion to some extent, but the effect is not obvious. Therefore, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was used to process noisy signals. Firstly, the decomposition results of simulation signals with EMD, EEMD and CEEMDAN were compared, and the permutation entropy values of IMF obtained by EMD, EEMD and CEEMDAN were calculated. Then the decomposition results of EMD, EEMD and CEEMDAN were Hilbert-transformed, and their spectral resolutions were compared. Finally, CEEMDAN was applied to the timefrequency analysis of underwater borehole blasting seismic waves. The results show that CEEMDAN can suppress the mode confusion, and its time-frequency spectrum has high resolution in both time and frequency domain.

Key words: empirical mode decomposition, complete ensemble empirical mode decomposition with adaptive noise, mode mixing, permutation entropy