华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (1): 32-41,50.doi: 10.12141/j.issn.1000-565X.190038

• 计算机科学与技术 • 上一篇    下一篇

基于 DeblurGAN 和低秩分解的去运动模糊

孙季丰 朱雅婷 王恺
  

  1. 华南理工大学 电子与信息学院,广东 广州 510640
  • 收稿日期:2019-01-23 修回日期:2019-07-29 出版日期:2020-01-25 发布日期:2019-12-01
  • 通信作者: 孙季丰 (1962-) ,男,教授,博士生导师,主要从事机器学习、模式识别、计算机视觉研究。 E-mail:ecjfsun@scut.edu.cn
  • 作者简介:孙季丰 (1962-) ,男,教授,博士生导师,主要从事机器学习、模式识别、计算机视觉研究。
  • 基金资助:
    广东省科技计划项目 ( x2dxB216005)

Motion Deblurring Based on DeblurGAN and Low Rank Decomposition

SUN Jifeng ZHU Yating WANG Kai   

  1. School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2019-01-23 Revised:2019-07-29 Online:2020-01-25 Published:2019-12-01
  • Contact: 孙季丰 (1962-) ,男,教授,博士生导师,主要从事机器学习、模式识别、计算机视觉研究。 E-mail:ecjfsun@scut.edu.cn
  • About author:孙季丰 (1962-) ,男,教授,博士生导师,主要从事机器学习、模式识别、计算机视觉研究。
  • Supported by:
    Supported by the Science and Technology Planning Project of Guangdong Province ( x2dxB216005)

摘要: 为研究出一种快速且有效的图像去模糊方法,基于 DeblurGAN 提出一种利用 条件生成对抗网络实现的端到端图像去运动模糊方法。该方法将 DeblurGAN 的标准卷 积层改成瓶颈结构,并对瓶颈结构中的卷积进行低秩分解,且添加两个残差对称跳跃连 接,以加速网络收敛。为解决 DeblurGAN 复原图像不够清晰这个问题,向网络损失函 数添加互信息损失和梯度图像 L1 损失,通过最大化输入图像和其隐含特征间的互信息, 使所提取的隐含特征能很好地表征输入信息,从而利用隐含特征还原出清晰图像,而 L1 损失有利于使复原图像的边缘更明显。同时,通过实验对该方法的有效性进行了验 证,并与其他已有的同类算法进行了比较。结果表明: 相比 DeblurGAN,文中方法峰值 信噪比更高,两者的结构相似性指标相当,且文中模型参数量压缩至 DeblurGAN 的 3. 25% ,去模糊速度提高 3 倍,模型性能优于已有的其他同类算法。

关键词: 去运动模糊, 生成对抗网络, 互信息, 低秩分解, 对称跳跃连接, 互信息损失, 梯度图像 L1 损失

Abstract: An end-to-end image motion deblurring method based on DeblurGAN was proposed with conditional generative adversarial network. In this method,the standard convolution layers in DeblurGAN were changed into bottleneck structures,and low-rank decomposition was further performed on the convolution layers in the bottleneck structures. Then two residual symmetric skip connections were added to accelerate the convergence of the network. In order to solve the problem that the restored images in the DeblurGAN are not clear,mutual information loss and the gradient image L1 loss were added to the network loss function. By maximizing the mutual information between the input image and its hidden feature,the extracted hidden feature can well represent the input information, thereby obtaining a clear restored image from the hidden feature,and the L1 loss helps to make the restored image with more significant edge. At the same time,the effectiveness of the proposed method was verified by experiments and compared with other existing similar algorithms. The results show that compared with DeblurGAN,the peak signal-to-noise ratio of the proposed method is higher; the structural similarity measure of the two methods is equiv- alent; the parameter quantity of our model is compressed to 3. 25% of DeblurGAN; the deblurring processing speed is increased by 3 times,and our model outperforms other existing similar algorithms.

Key words: motion deblurring, generative adversarial network, mutual information, low-rank decomposition, symmetric skip connection, mutual information loss, gradient image L1 loss

中图分类号: