华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (9): 90-97.doi: 10.12141/j.issn.1000-565X.180221

• 交通运输工程 • 上一篇    下一篇

基于深度学习的虚拟到现实车道保持控制

杨顺 吴坚 蒋渊德 王国军 刘海贞   

  1. 吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130025
  • 收稿日期:2018-05-14 修回日期:2019-04-11 出版日期:2019-09-25 发布日期:2019-08-01
  • 通信作者: 吴坚(1977-),男,教授,博士生导师,主要从事电动汽车底盘集成控制及智能化研究. E-mail:wujian@jlu.edu.cn
  • 作者简介:杨顺(1991-),男,博士生,主要从事基于机器学习的智能车辆控制研究. E-mail:yangshun628@163. com
  • 基金资助:
    国家重点研发计划项目(2016YFB0100904); 国家自然科学基金资助项目(U1564211) 

Deep-Learning-Based Lane-Keeping Control Framework: From Virtuality to Reality

YANG Shun WU Jian JIANG Yuande WANG Guojun LIU Haizhen    

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,Jilin,China 
  • Received:2018-05-14 Revised:2019-04-11 Online:2019-09-25 Published:2019-08-01
  • Contact: 吴坚(1977-),男,教授,博士生导师,主要从事电动汽车底盘集成控制及智能化研究. E-mail:wujian@jlu.edu.cn
  • About author:杨顺(1991-),男,博士生,主要从事基于机器学习的智能车辆控制研究. E-mail:yangshun628@163. com
  • Supported by:
    Supported by the National Key Research and Development Program of China (2016YFB0100904) and the Na- tional Natural Science Foundation of China (U1564211) 

摘要: 深度学习由于其强大的非线性拟合能力,已经被广泛应用于无人驾驶控制器训 练领域. 然而,由于其训练过程需要大量标注数据,耗费大量人力物力,且人为采集的数据 很难覆盖危险工况,导致训练的模型泛化能力较差,影响了深度学习控制器的性能提升. 本研究提出一种从虚拟世界采集样本,将训练模型向真实世界泛化的端对端卷积神经网 络(CNN)控制器训练框架. 为缩小虚拟和真实世界的差距,本研究以语义分割图像作为 媒介,将虚拟和真实图像分别转化为语义分割图像用于训练和测试. 结果表明,虚拟到现 实训练得到的控制器可以较好地跟随道路变化趋势,经权值微调后预测输出与人类驾驶 员操作相近,最大平均绝对误差和均方根误差分别为 1. 6939°和 2. 8850°,平均绝对百分 比误差在 5%以内.

关键词: 无人驾驶, 深度学习, 仿真平台, 图像分割, 车道保持

Abstract: Deep-learning-based approaches have been widely used for training controllers for autonomous vehicles due to their powerful ability to approximate nonlinear functions or policies. However,the training process usually requires large amount of labeled real-world driving dataset,and the data collection and labeling process is always time and money-consuming. Corner-case data collecting is difficult for human,which may lead to poor generaliza- tion ability of the training model and hamper the promotion of the deep learning controller performance. Thus a framework was proposed to train an end-to-end convolutional neural network (CNN) controller in virtual game en- gine TORCS and generalized the trained controller into reality. To narrow the gap between virtual and real environ- ment,semantic segmentation was used as medium. The training dataset from game engine and the testing data from reality are all translated into semantic segmentation style for both training and validation. Validation result shows that the trained lane keeping controller can be deployed to solve the real-world driving task and get a good performance. Compared with human driver operation,the changing trends of the fine-tuned CNN controllers' out- put is consistent with human driver,the maximum MAE and RMSE are 1. 6939°and 2. 8850°,and the average MAPEs are all under 5%.

Key words: self-driving, deep learning, simulation platform, image segmentation, lane keeping

中图分类号: