华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (1): 112-119.doi: 10.12141/j.issn.1000-565x.180135

• 能源、动力与电气工程 • 上一篇    下一篇

全铝无接触热阻冷凝器的建模与性能测试

万锐1 王义春1† Revaz Kavtaradze1 贾润泽1    

  1. 北京理工大学 机械与车辆学院,北京 100081
  • 收稿日期:2018-03-03 修回日期:2018-09-05 出版日期:2019-01-25 发布日期:2018-12-01
  • 通信作者: 王义春( 1963) ,男,副教授,博士生导师,主要从事新能源汽车热泵空调研究. E-mail:wych@bit.edu.cn
  • 作者简介:万锐( 1990) ,男,博士生,主要从事车辆冷却、空调系统研究
  • 基金资助:
     广东省教育部产学研结合项目( 200913090300301)

Modeling and Performance Testing of Aluminum Non-contact Thermal Resistance Condensers
 

WAN Rui WANG Yichun Revaz Kavtaradze JIA Runze   

  1.   School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China
  • Received:2018-03-03 Revised:2018-09-05 Online:2019-01-25 Published:2018-12-01
  • Contact: 王义春( 1963) ,男,副教授,博士生导师,主要从事新能源汽车热泵空调研究. E-mail:wych@bit.edu.cn
  • About author:万锐( 1990) ,男,博士生,主要从事车辆冷却、空调系统研究
  • Supported by:
     Supported by the Research and Production Combination Project of Guangdong Provincial and Ministry of Education( 200913090300301) 

摘要: 采用分布参数法建立了空调系统全铝无接触热阻冷凝器的稳态计算模型,并用 空气焓值法对全铝无接触热阻冷凝器试件进行了性能测试实验;通过与实验结果的对比, 验证了该数学模型的计算精度———在相同工况下,该冷凝器计算模型的换热量最大误差 为4. 8%,气侧压降最大误差为6. 7%. 用建立的模型分析了冷凝器结构尺寸变化对其换 热性能和压降的影响. 采用冷凝器综合性能因子 ε 来综合考虑换热量和气侧压降对冷凝 器性能的影响. 结果表明:全铝冷凝器的换热量随内流道宽 b'的增大而减小; 全铝冷凝器 的换热量随翅片管数 n 的增大而增大;全铝冷凝器换热量随翅片管宽度 a 的增大而增大; 当翅片管宽 a 为40mm,翅片管数 n 为22,内流道宽度 b'为1. 4mm 时,冷凝器的换热量最 大,为3423. 2W,空气压降为 19. 15 Pa; 全铝冷凝器换热系数随着翅片管宽的 a 的增大先 增大后减小,在翅片管宽 a 为38mm 时取得最大值;换热系数随着翅片管数 n 的增大而增 大;冷凝器综合性能因子 ε 随着翅片管宽 a 的增大先增大后减小,随着翅片管数的增大而 增大. 

关键词: 无接触热阻冷凝器, 数学模型, 空气焓值法, 换热量, 气侧压降, 冷凝器性能 

Abstract:  The steady state calculation model of aluminum non-contact thermal resistance condensers for air conditioning system was established by using distributed parameter method,and the performance of the all-aluminum non-contact thermal resistance condensers was tested with air enthalpy method. The calculation accuracy of the numerical model is verified by comparison with the experimental results. The results show that,under the same working conditions,the maximum error of heat exchange of the condenser is 4. 8%,and the maximum error of air side pressure drop is 6. 7%. The influence of condenser structure on its heat exchange performance and pressure drop was analyzed,and the comprehensive performance factor ε was employed to study the influence both of the heat exchange and the pressure drop of the air side on the performance of the condenser. The results show that the heat exchange capacity of the aluminum condenser decreases with the increase of the inner flow channel width b'; the heat exchange capacity of the aluminum condenser increases with the increase of the finned tube number n; the heat exchange capacity of the aluminum condenser increases with the increase of the finned tube width a; when the finned tube width a is 40 mm,the finned tube number n is 22,and the inner flow channel width b' is 1. 4 mm,the condenser's heat exchange reaches the maximum,3423. 2W,and the air pressure drop is 19. 15Pa; the heat exchange coefficient of the aluminum condenser increases first and then decreases with the increase of the finned tube width a,and the maximum value is obtained when the finned tube width a is 38 mm; the heat exchange coefficient increases with the increase of finned tube number n; the overall performance factor ε of the condenser increases first and then decreases with the increase of the finned tube width a,and increases with the increase of the finned tube number n. 

Key words: non-contact thermal resistance condenser, numerical model, air enthalpy test, heat exchange capacity, air-side pressure drop, performance of condenser

中图分类号: