华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (12): 128-138.doi: 10.3969/j.issn.1000-565X.2018.12.016

• 交通运输工程 • 上一篇    下一篇

电池交换式电动汽车换电站优化模型研究

张勇 顾腾飞   

  1. 苏州大学 城市轨道交通学院
  • 收稿日期:2018-02-01 修回日期:2018-09-10 出版日期:2018-12-25 发布日期:2018-11-01
  • 通信作者: 张勇(1978-) ,男,博士,副教授,主要从事交通规划与管理研究 E-mail:sinkey@126.com
  • 作者简介:张勇(1978-) ,男,博士,副教授,主要从事交通规划与管理研究
  • 基金资助:
    多方式交通网络时间可靠性对出行选择行为影响规律研究;《城市地铁系统脆弱性评价及控制策略研究》子课题:城市地铁系统突发事件应急管理;非常态条件下城市道路交通网络脆弱性辨识方法

Optimization Model of Recharging stations for electric vehicles with battery swapping

ZHANG Yong GU Tengfei    

  1. School of Railway Transportation,Soochow University
  • Received:2018-02-01 Revised:2018-09-10 Online:2018-12-25 Published:2018-11-01
  • Contact: 张勇(1978-) ,男,博士,副教授,主要从事交通规划与管理研究 E-mail:sinkey@126.com
  • About author:张勇(1978-) ,男,博士,副教授,主要从事交通规划与管理研究
  • Supported by:
    transportation planning|swapping station planning|user equilibrium|electric vehicle|battery swapping

摘要: 为实现电动汽车快速补能,面向电池交换的充电方式,研究了城市路网上电动汽车换电站的选址及电池保有量问题。为此,首先考虑电动汽车前往换电站的路径选择,建立社会总成本最小为目标的换电站选址优化模型,获得换电站的最优选址及换电需求;然后基于换电站处的电动汽车-满电电池的生灭模型获得换电用户延误成本,由此建立了换电站处的社会总成本最小化的电池保有量优化模型。研究表明:建立的电池交换式电动汽车换电站优化模型可以获得路网路段流量及换电站处的换电需求量,给出最优的建站数量、选址方案及换电站建设时序;电动汽车渗透率对换电站建站数量和选址、交通网络均衡有较复杂的影响;交换站数量的增加能减少出行成本,但边际作用递减;随着电动汽车渗透率的提升,路网内的交换电池总数将相应增加,但并非每个换电站均增加交换电池保有量。增加交换站电池保有量将提升其满电电池概率,但是其边际作用递减;充电技术的进步也将提高满电电池的概率。研究结果可为城市换电站的规划和运营提供决策依据。

关键词: 交通规划, 换电站规划, 用户均衡模型, 电动汽车, 电池交换 

Abstract: In order to realize rapid recharge for electric vehicles(EV), the locations and batteries holdings of recharging stations for electric vehicles on city road network are studied with battery swapping charging mode. Therefore, the path choice of electric vehicles traveling to recharging stations is firstly considered, the optimal model for recharging stations to minimize total social cost was established, which solves optimal locations of the recharging station and EV's demand to swapping batteries; and then the delay cost of user to swap battery was obtained based on live-death model of EVs and fully-charged batteries at recharging station, thereby establishing a battery holding's optimization model to minimize the total social cost at battery swapping station. The research shows that the optimization model of battery-swapping station can achieve the link flow of road network, the demand of battery swapping at stations, optimal totals and locations and construction sequences of stations’. The penetration of EVs has a more complicated impact on the number and locations of swapping stations and the traffic network equilibrium. The increase of swapping stations amount can reduce the travel cost, but the marginal effect is diminishing. As the penetration of electric vehicles increases, the total number of swapping batteries in the road network will increase correspondingly, but not every exchange station will increase the amount of swapping batteries. Increasing the swapping battery holding at swapping station will increase the probability of fully-charged batteries, but the marginal effect is also diminishing. The advancement of charging technology will increase the probability of fully-charged batteries. The research results can provide decision-making basis for the planning and operation of urban swapping stations.

中图分类号: