华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (12): 51-57.doi: 10.3969/j.issn.1000-565X.2018.12.007

• 机械工程 • 上一篇    下一篇

电动物流车驱动电机冷却系统最优温度控制

胥军,孙裕民,李刚炎,冯澜   

  1. 1. 武汉理工大学
    2. Wuhan University of Technology
  • 收稿日期:2018-02-01 修回日期:2018-08-28 出版日期:2018-12-25 发布日期:2018-11-01
  • 通信作者: 胥军(1977-) ,男,博士,副教授,主要从事气压传动控制和车载网络研究 E-mail: xujunwhut@163.com
  • 作者简介:胥军(1977-) ,男,博士,副教授,主要从事气压传动控制和车载网络研究
  • 基金资助:
    湖北省自然科学基金资助项目( 2015CFB567) ;
    湖北省科技厅条件平台建设项目( 2015BCE08) 

Optimal Temperature Control Strategy for Electric Transport Vehicle Drive Motor Cooling System#br#

XU Jun SUN Yumin LI Gangyan FENG Lan    

  1. School of Mechanical & Electric Engineering,Wuhan University of Technology
  • Received:2018-02-01 Revised:2018-08-28 Online:2018-12-25 Published:2018-11-01
  • Contact: 胥军(1977-) ,男,博士,副教授,主要从事气压传动控制和车载网络研究 E-mail: xujunwhut@163.com
  • About author:胥军(1977-) ,男,博士,副教授,主要从事气压传动控制和车载网络研究
  • Supported by:
    The Natural Science Foundation of Hubei Province of China( 2015CFB567) and the Science and Technology Department Conditional Platform Construction Project of Hubei Province( 2015BCE08) 

摘要: 为保证电动物流车驱动电机工作在安全温度区间内,需控制其冷却系统输出功率,而阈值触发等传统控制方式未考虑驱动电机热损耗与冷却系统输出功率的对立关系,造成冷却系统消耗总功率较高。为使冷却系统总功率,即上述两功率之和最低,提出了一种最优温度控制策略。该控制策略依据对总功率与电机温度关系的分析,计算出总功率最低点对应的电机温度为最优温度,以此为目标温度控制冷却系统输出功率,即控制电子风扇转速,从而达到节能的目的。以某型电动物流车为例,基于AMESim-MATLAB联合仿真平台对该控制策略进行了建模仿真,证明了该控制策略的可行性;搭建试验台对该控制策略进行试验,结果表明,冷却系统总功率较阈值控制方式降低约3.8%。

关键词: 电动物流车, 驱动电机, 冷却系统, 联合仿真, 最优温度控制 

Abstract: In order to guarantee electric transport vehicle drive motor working in safety temperature range, output power of electric vehicle driving motor cooling system needs to be precisely controlled. Without considering the contrary relationship between drive motor’s heat loss and output power from cooling system, traditional control methods such as threshold triggering will cause higher total power consumption. An optimal temperature control strategy was proposed to minimize total power consumption of the cooling system. Taking the calculated motor’s temperature corresponding to the lowest total power consumption, this strategy can fulfill the aim of energy saving through controlling electronic fan’s rotating speed, which is deduced from analysis of relationship between total power and motor’s temperature. Taking a certain type electric transport vehicle as the application object, a simulation model was setup based on AMESim-MATLAB co-simulation platform to testify feasibility of the control strategy. Meanwhile, test results from a specially built platform have shown that the total power consumption can reduced about 3.8% compared with threshold triggering control mode.

Key words: electric transport vehicle, driving motor, cooling system, cosimulation, optimal temperature control

中图分类号: