华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (3): 30-36,92.doi: 10.12141/j.issn.1000-565X.180228

• 能源、动力与电气工程 • 上一篇    下一篇

基于不平衡样本的 CF-SOM-MQE 感应电机状态分析

王磊1,2 刘永强1†   

  1. 1. 华南理工大学 电力学院,广东 广州 510640; 2. 国家电网河北省电力有限公司沧州供电分公司,河北 沧州 061000
  • 收稿日期:2018-05-14 修回日期:2018-08-22 出版日期:2019-03-25 发布日期:2019-01-31
  • 通信作者: 刘永强( 1961-) ,男,博士生导师,主要从事嵌入式技术在电气系统中的应用研究 E-mail:epyqliu@scut.edu.cn
  • 作者简介:王磊( 1987-) ,男,博士生,主要从事感应电机故障诊断研究
  • 基金资助:
     广东省自然科学基金资助项目( 2016A030313464)

State Analysis of Induction Motor Based on CF-SOM-MQE Under Unbalanced Sample Condition

 WANG Lei 1,2 LIU Yongqiang1   

  1.  1. School of Electric Power,South China University of Technology,Guangzhou 510640,Guangdong,China; 2. State Grid Hebei Electric Power Co. ,Ltd. ,Cangzhou Power Supply Branch,Cangzhou 061000,Hebei,China
  • Received:2018-05-14 Revised:2018-08-22 Online:2019-03-25 Published:2019-01-31
  • Contact: 刘永强( 1961-) ,男,博士生导师,主要从事嵌入式技术在电气系统中的应用研究 E-mail:epyqliu@scut.edu.cn
  • About author:王磊( 1987-) ,男,博士生,主要从事感应电机故障诊断研究
  • Supported by:
     Supported by the Natural Science Foundation of Guangdong Province( 2016A030313464)

摘要: 为提高感应电机状态评估的精度,本研究提出了一种基于相关性算法( CF) 和自 组织映射最小量化误差( SOM-MQE) 的模型来解决基波电流信号干扰和缺少故障数据的 问题. 首先简要介绍自相关算法与互相关算法理论,分析了定子电流中的特征谐波分量, 将其作为性能退化指标输入 SOM 神经网络中,在此基础上计算其最小量化误差( MQE) 值的大小,并将 MQE 作为感应电机状态监测的衡量指标. 实例表明,所提模型能够准确地 对感应电机健康状态进行估计,具有较强的工程应用价值及通用性

关键词: 感应电机, 相关性基波消去法, 最小量化误差, 故障预测与健康管理

Abstract: To improve the accuracy of induction motor state evaluation,a model based on correlation algorithm ( CF) and self-organizing map minimum quantization error ( SOM-MQE) was proposed to solve the problem of fundamental current signal interference and lack of fault data. Firstly,the autocorrelation algorithm and cross-correlation algorithm theory were briefly introduced. The characteristic harmonic components in the stator current were analyzed and input into the SOM neural network as performance degradation indicators. Based on this,the minimum quantization error ( MQE) value was calculated. MQE was used as a measure of condition monitoring of induction motors. The example shows that the proposed model can accurately estimate the health status of induction motors,so it has strong engineering application value and versatility.

Key words: induction motor, correlation fundamental wave cancellation, minimum quantization error, fault prediction and health management

中图分类号: