华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (4): 15-21.doi: 10.3969/j.issn.1000-565X.2017.04.003

• 动力与电气工程 • 上一篇    下一篇

考虑尺度间相关性的电缆瓷套终端红外图像去噪

牛海清1 吴炬卓2 许佳1 吴倩3 高紫建2 郑文坚1   

  1. 1. 华南理工大学 电力学院,广东 广州 510640; 2. 珠海供电局,广东 珠海 519000;3. 广州供电局有限公司,广东 广州 510620
  • 收稿日期:2015-10-19 修回日期:2016-04-21 出版日期:2017-04-25 发布日期:2017-03-01
  • 通信作者: 牛海清( 1969-) ,女,博士,副教授,主要从事高压电缆线路及高压电气设备研究. E-mail:niuhq@scut.edu.cn
  • 作者简介:牛海清( 1969-) ,女,博士,副教授,主要从事高压电缆线路及高压电气设备研究.
  • 基金资助:

    国家高技术研究发展计划( 863 计划) 项目( 2015AA050201)

Denoising of Infrared Images of Porcelain Sleeve Cable Terminal Considering Inter-Scale Correlation

NIU Hai-qing1 WU Ju-zhuo2 XU Jia1 WU Qian3 GAO Zi-jian2 ZHENG Wen-jian1   

  1. 1.School of Electric Power,South China University of Technology,Guangzhou 510640,Guangdong,China; 2.Zhuhai Power Supply Bureau,Zhuhai 519000,Guangdong,China; 3.Guangzhou Power Supply Bureau,Guangzhou 510620,Guangdong,China
  • Received:2015-10-19 Revised:2016-04-21 Online:2017-04-25 Published:2017-03-01
  • Contact: 牛海清( 1969-) ,女,博士,副教授,主要从事高压电缆线路及高压电气设备研究. E-mail:niuhq@scut.edu.cn
  • About author:牛海清( 1969-) ,女,博士,副教授,主要从事高压电缆线路及高压电气设备研究.
  • Supported by:
    Supported by the National High-Tech R&D Program of China( 863 Program) ( 2015AA050201)

摘要: 为有效抑制图像噪声,提高电气设备红外诊断的准确性,采用基于小波系数尺度间相关性和双变量收缩函数的方法对电缆瓷套终端红外图像进行去噪. 将图像进行小波
分解,计算小波系数尺度间的相关系数,使用模糊c-均值聚类法对相关系数聚类,即将小波系数分为有效系数和无效系数两类. 对无效小波系数直接进行置零处理,对有效小波系数使用双变量收缩函数进行处理,得到真实图像小波系数的估计值. 最后,对处理得到的真实图像小波系数的估计值进行重构,便得到去噪后图像. 含噪图像的去噪结果表明,运用文中方法能有效地去除红外图像中的噪声,且与使用传统软阈值方法去噪得到的图像对比,文中方法去噪后的图像信噪比更高,最小均方误差更小.

关键词: 图像去噪, 尺度间相关性, 小波变换, 相关系数, 模糊c-均值, 双变量收缩

Abstract:

In order to effectively suppress the noise of images and improve the accuracy of infrared diagnosis of electrical equipment,a denoising method based on both the wavelet coefficients’inter-scale correlation and the bivariate shrinkage function is proposed to denoise the infrared images of porcelain sleeve cable terminals.In this method,first,the wavelet transform coefficients are separated into two sorts by means of fuzzy c-means clustering according to the calculated inter-scale correlation coefficients of wavelet coefficients,namely,the efficient coefficients and the invalid coefficients.Then,the invalid wavelet coefficients are directly set to zero,while the efficient wavelet coefficients are processed with the bivariate shrinkage function.Thus,the estimated values of image's wavelet coefficients are obtained.Finally,the estimated wavelet coefficients are used to reconstruct a denoised image.The denoising results of infrared images with noise show that,as compared with the traditional soft thresholding method,the proposed method is more effective because it improves both the signal-to-noise ratio and the mean square error.

Key words: image denoising, inter-scale correlation, wavelet transform, correlation coefficient, fuzzy c-means, bivariate shrinkage