华南理工大学学报(自然科学版) ›› 2004, Vol. 32 ›› Issue (1): 24-28.

• • 上一篇    下一篇

基于RST改进NN模型的高压输电线系统故障诊断

廖志伟 王钢 叶青华   

  1. 华南理工大学 电力学院‚广东 广州510640
  • 收稿日期:2003-04-23 出版日期:2004-01-20 发布日期:2015-09-07
  • 通信作者: 廖志伟(1973-)‚男‚博士‚讲师‚主要从事电力系统智能控制和故障诊断的研究. E-mail:epliao@scut.edu.cn
  • 作者简介:廖志伟(1973-)‚男‚博士‚讲师‚主要从事电力系统智能控制和故障诊断的研究.
  • 基金资助:
    国家自然科学基金资助项目(59877016)

A RST-based Improved NN Model for Fault Diagnosis of High Voltage Transmission Line System

Liao Zhi-wei Wang Gang Ye Qing- hua   

  1. College of Electric Power‚South China Univ.of Tech.‚Guangzhou510640‚Guangdong‚China
  • Received:2003-04-23 Online:2004-01-20 Published:2015-09-07
  • Contact: 廖志伟(1973-)‚男‚博士‚讲师‚主要从事电力系统智能控制和故障诊断的研究. E-mail:epliao@scut.edu.cn
  • About author:廖志伟(1973-)‚男‚博士‚讲师‚主要从事电力系统智能控制和故障诊断的研究.

摘要: 为了克服实时诊断信息在形成和传递过程中的畸变而导致故障诊断结果的错误‚在基于粗糙集理论(Rough Set Theory‚简称 RST)的高压输电线系统故障诊断模型的研究基础上‚充分利用神经网络(Neural Networks‚简称 NN)的泛化能力和粗糙集理论强大的定性分析能力‚构造了 RST 与 NN 相结合的故障诊断模型.首先利用 RST 从诊断样本中提取领域知识‚然后利用所提取的诊断对象知识属性形成诊断 NN 的初始结构‚进而增强诊断 NN 的智能性和容错性.通过高压输电线系统故障诊断的仿真结果比较‚证明了该模型的有效性和通用性.该模型即使在诊断信息不完整的情况下‚也具有高的诊断容错性能‚因此在电力系统实时故障诊断方面具有广阔的应用前景.

关键词: 输电线系统, 故障诊断, 容错性能, 粗糙集理论, 神经网络

Abstract:  To overcome the mis-diagnosis of fault caused by the distortion of rea- l time diagnosis information during the generation and transfer processes‚on the basis of the research into the RST (Rough Set Theory)-based fault diagnosis model of high voltage transmission line system and by utilizing the generalization ability of neural network (NN) and the great qualitative analysis ability of RST‚the fault diagnosis model with the combination of RST and NN was constructed.In this approach‚RST was used to extract knowledge region data set from diagnosis samples‚and the basic structure of NN was built on the basis of diagnosis knowledge attribute.Thus the intelligence and fault tolerance performance of diagnosis NN system were improved.The validity and commonality of the proposed model were proved by the comparison of simulation results of the fault diagnosis system.The proposed model has excellent fault tolerance performance even though the diagnosis information is not complete‚so it is of important practical value in the rea- l time fault diagnosis of electric power system.

Key words:  transmission line system, fault diagnosis, fault tolerance performance, rough set theory, neural network

中图分类号: