华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (10): 35-41.doi: 10.3969/j.issn.1000-565X.2015.10.006

• 交通与运输工程 • 上一篇    下一篇

用于跑道调度的约束多目标遗传模拟退火算法

张书琴夏洪山姜雨战绪仁2   

  1.  1. 南京航空航天大学 民航学院,江苏 南京 211106; 2. 胶州市规划局,山东 胶州 266300
  • 收稿日期:2014-12-22 修回日期:2015-05-04 出版日期:2015-10-25 发布日期:2015-09-06
  • 通信作者: 张书琴( 1989-) ,女,博士生,主要从事跑道调度的模型及算法研究. E-mail:shuqin1989_happy@yeah.net
  • 作者简介:张书琴( 1989-) ,女,博士生,主要从事跑道调度的模型及算法研究.
  • 基金资助:
    国家自然科学基金 - 民航联合基金资助项目( U1333117) ; 中国博士后科学基金资助项目( 2012M511275)

A Constrained Multi-Objective Genetic Simulated Annealing Algorithm for Runway Scheduling

Zhang Shu-qin1 Xia Hong-shan1 Jiang Yu1 Zhan Xu-ren2   

  1. 1. College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,Jiangsu,China; 2. Jiao Zhou City Planning Bureau,Jiaozhou 266300,Shandong,China
  • Received:2014-12-22 Revised:2015-05-04 Online:2015-10-25 Published:2015-09-06
  • Contact: 张书琴( 1989-) ,女,博士生,主要从事跑道调度的模型及算法研究. E-mail:shuqin1989_happy@yeah.net
  • About author:张书琴( 1989-) ,女,博士生,主要从事跑道调度的模型及算法研究.
  • Supported by:
    Supported by the Joint Funds of the National Natural Science Foundation of China-Civil Aviation Administration ( U1333117) and China Postdoctoral Science Foundation( 2012M511275)

摘要: 为获得较优跑道调度方案,以提高跑道运行效率,建立了约束多目标多跑道进离 场航班调度模型. 在分析遗传算法与模拟退火算法特征的基础上,提出遗传模拟退火组合 算法. 分别采用 Pareto 支配及理想点法对跑道调度目标函数进行处理,采用惩罚目标函数 值及可行解占优的方式处理约束条件,并确定了不同条件下新粒子更新机制及最优粒子 筛选原则. 文中还通过设置温度自适应改变机制控制算法收敛速度,以提高最优解性能. 最后,以国内某大型机场跑道调度为例,对文中算法的有效性进行验证. 结果表明: 基于 Pareto 支配的约束多目标遗传算法能获得跑道调度多组较优可行解,且时效性强.

关键词: 航空运输, 近距平行跑道, 约束多目标优化, 遗传模拟退火算法, Pareto 最优, 理想点法

Abstract: In order to obtain an optimal runway-scheduling scheme to improve the efficiency of runway operation,a constrained multi-objective model for arrivals and departures on multi-runways is constructed,and an improved genetic simulated annealing algorithm is proposed by analyzing the characteristics of both the genetic algorithm and the simulated annealing one. In the proposed algorithm,the objective functions for runway scheduling are processed by means of the Pareto dominance and the ideal point method,and the constraint conditions are handled by using the penalty objective functions and the dominated feasible solution. Furthermore,the mechanisms of updating new particles and selecting the best scheme are determined. For the purpose of improving the performance of the optimal solution,the convergence speed of the proposed algorithm is controlled by changing the temperature adaptively. Finally,the effectiveness of the proposed algorithm is verified by the actual runway scheduling of a domestic huge airport. The results show that the proposed algorithm based on the Pareto dominance can obtain a set of better feasible solutions of runway scheduling and is of a better timeliness.

Key words: air transportation, closely parallel runway, constrained multi-objective optimization, genetic simulated annealing algorithm, Pareto optimal solution, ideal point method 

中图分类号: