华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (9): 95-99.doi: 10.3969/j.issn.1000-565X.2015.09.015

• 计算机科学与技术 • 上一篇    下一篇

云计算环境下基于改进离散粒子群的并行调度算法

徐华 张庭   

  1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 收稿日期:2014-09-28 修回日期:2015-03-28 出版日期:2015-09-25 发布日期:2015-09-07
  • 通信作者: 徐华(1978-),女,博士,副教授,主要从事人工神经网络、模糊系统、水污染等研究. E-mail:joanxh2003@163.com
  • 作者简介:徐华(1978-),女,博士,副教授,主要从事人工神经网络、模糊系统、水污染等研究.
  • 基金资助:
    国家留学基金委资助项目(201308320030);江苏省自然科学基金资助项目(BK20140165)

Improved Discrete Particle Swarm-Based Parallel Schedule Algorithm in Cloud Computing Environment#br#

Xu Hua  Zhang Ting   

  1. School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,Jiangsu,China
  • Received:2014-09-28 Revised:2015-03-28 Online:2015-09-25 Published:2015-09-07
  • Contact: 徐华(1978-),女,博士,副教授,主要从事人工神经网络、模糊系统、水污染等研究. E-mail:joanxh2003@163.com
  • About author:徐华(1978-),女,博士,副教授,主要从事人工神经网络、模糊系统、水污染等研究.
  • Supported by:
    Supported by the National Scholarship Fund Program(201308320030) and the Natural Science Foundation of
    Jiangsu Province(BK20140165)

摘要: 针对云计算环境下的任务调度优化问题和传统离散粒子群优化( DPSO) 算法早熟、精度低等缺点,提出了一种适合云计算环境下动态调整惯性权重因子的方法,并给出了云计算环境下改进后的离散粒子群优化算法. 该算法能快速确定合适的并行任务分配方案,使其达到调度长度最短的优化目标. 仿真结果表明: 文中改进的 DPSO 算法的收敛性、前期全局搜索和后期局部探索性能均优于传统的 DPSO 算法和遗传算法; 在任务数较大的情况下,采用改进 DPSO 算法的并行任务调度算法的调度长度明显优于采用传统DPSO 算法和遗传算法的并行任务调度算法.

关键词: 云计算, 并行算法, 离散粒子群优化

Abstract: Aiming at the optimization problem of task scheduling in the cloud computing environment and the defects of prematurity and low precision of traditional discrete particle swarm optimization (DPSO) algorithms,a
method of dynamically adjusting the inertia weight factor is proposed in a cloud computing environment,and an improved discrete particle swarm optimization algorithm is put forward. This algorithm can determine the appropriate parallel task allocation scheme quickly,and makes the scheme achieve the shortest scheduling length. Simulation results show that the improved DPSO algorithm is superior to the traditional DPSO algorithm and the genetic algorithm in terms of the convergence,the previous global search capability and the late local exploration performance,and that,in the case of a large number of tasks,the parallel task scheduling algorithm using the improved DPSO algorithm is superior to those using the traditional DPSO algorithm or the genetic algorithm in terms of scheduling length.

Key words: cloud computing, parallel algorithms, discrete particle swarm optimization