华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (5): 59-65.doi: 10.3969/j.issn.1000-565X.2015.05.010

• 电子、通信与自动控制 • 上一篇    下一篇

基于 NSCT 和 KFCM 聚类的图像边缘检测方法

吴一全1,2,3,4 朱丽1 李立1   

  1. 1. 南京航空航天大学 电子信息工程学院,江苏 南京 210016; 2. 江苏省制浆造纸科学与技术重点实验室,江苏 南京 210037; 3. 高速铁路线路工程教育部重点实验室,四川 成都 610031;4. 深圳市城市轨道交通重点实验室,广东 深圳 518060
  • 收稿日期:2014-09-30 修回日期:2015-01-27 出版日期:2015-05-25 发布日期:2015-05-07
  • 通信作者: 吴一全(1963-),男,博士,教授,博士生导师,主要从事图像处理与分析、目标检测与识别、智能信息处理研究. E-mail:nuaaimage@163.com
  • 作者简介:吴一全(1963-),男,博士,教授,博士生导师,主要从事图像处理与分析、目标检测与识别、智能信息处理研究.
  • 基金资助:

    江苏省制浆造纸科学与技术重点实验室开放基金资助项目(201313);高速铁路线路工程教育部重点实验室开放基金资助项目(2014-HRE-01);深圳市城市轨道交通重点实验室开放基金资助项目(SZCSGD201306);国家自然科学基金资助项目(61203246,61102131);江苏高校优势学科建设工程资助项目

Edge Detection of Images Based on NSCT and KFCM

Wu Yi-quan1,2,3,4 Zhu Li1 Li Li1   

  1. 1. College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China; 2. Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology,Nanjing 210037,Jiangsu,China; 3. Key Laboratory of High-Speed Railway Engineering of the Ministry of Education,Chengdu 610031,Sichuan,China;4. Shenzhen Key Laboratory of Urban Rail Traffic,Shenzhen 518060,Guangdong,China
  • Received:2014-09-30 Revised:2015-01-27 Online:2015-05-25 Published:2015-05-07
  • Contact: 吴一全(1963-),男,博士,教授,博士生导师,主要从事图像处理与分析、目标检测与识别、智能信息处理研究. E-mail:nuaaimage@163.com
  • About author:吴一全(1963-),男,博士,教授,博士生导师,主要从事图像处理与分析、目标检测与识别、智能信息处理研究.
  • Supported by:
    Supported by the Foundation of Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology(201313),the Foundation of Key Laboratory of High-Speed Railway Engineering of the Ministry of Education(2014-HRE-01) and the National Natural Science Foundation of China(61203246,61102131)

摘要: 为进一步提高现有图像边缘检测方法的性能,提出了一种基于非下采样 Contourlet变换(NSCT)和核模糊 c-均值(KFCM)聚类的图像边缘检测方法. 首先通过 NSCT 将原始图像分解成低频分量和高频分量;然后对含噪声较少的低频分量提取边缘信息,并采用 KFCM聚类算法进行聚类得到低频边缘图像,以提高定位精度,而对于边缘细节信息较多的高频分量各个子带,通过模极大值检测边缘以减少伪边缘,丰富图像细节;最后对低频和高频图像边缘进行融合得到完整的边缘. 实验结果表明,相比于 Canny 方法、边缘检测算子与模糊聚类结合的方法、边缘信息与混沌粒子群优化的模糊聚类结合的方法、NSCT 域模极大值方法,文中方法具有更好的边缘检测效果,边缘定位准确、完整、连续、细节丰富.

关键词: 图像处理, 边缘检测, 非下采样 Contourlet 变换, 核模糊 c-均值聚类, 模极大值

Abstract: In order to improve the performance of existing image edge detection methods,a novel edge detection method on the basis of nonsubsampled contourlet transform (NSCT) and kernel fuzzy c-means clustering (KFCM) is proposed. In this method,firstly,an original image is decomposed into a low-frequency component and some high-frequency components via NSCT. Secondly,edge information is extracted from the low-frequency component with less noise and is clustered via KFCM to obtain low-frequency edge image. As a result,the accuracy of edge localization is improved. Then,in order to decrease pseudo-edges and richen image details,the method of modulus maxima is applied to high-frequency components with more edges and details. Finally,the whole image edge is obtained by fusing the edge images of low-frequency component and high-frequency components. Experimental results show that,in comparison with the Canny method,the method on the basis of edge detection operator and fuzzy clustering,the method on the basis of edge information and fuzzy c-means algorithm optimized by chaotic par-ticle swarm,as well as the method of modulus maxima in NSCT domain,the proposed method helps obtain better edge detection effect with accurate edge localization,continuous and complete edges,as well as abundant details.

Key words: image processing, edge detection, nonsubsampled contourlet transform, kernel fuzzy c-means cluste-ring, modulus maxima

中图分类号: