华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (3): 57-65.doi: 10.3969/j.issn.1000-565X.2015.03.009

• 电子、通信与自动控制 • 上一篇    下一篇

基于灵活 LBP 纹理字典构造及多特征描述的改进 SCSR 算法

马丽红 黄茵 黎剑晖   

  1. 华南理工大学 电子与信息学院/ /国家移动超声探测工程技术研究中心,广东 广州 510640
  • 收稿日期:2014-08-21 修回日期:2014-12-08 出版日期:2015-03-25 发布日期:2015-02-10
  • 通信作者: 马丽红(1965-),女,博士,教授,主要从事图像视频信号处理、容错编码和数据隐藏、模式识别研究. E-mail:eelhma@scut.edu.cn
  • 作者简介:马丽红(1965-),女,博士,教授,主要从事图像视频信号处理、容错编码和数据隐藏、模式识别研究.
  • 基金资助:

    国家自然科学基金资助项目(61471173)

Improved SCSR Algorithm on the Basis of Flexible LBP Texture Dictionary and Multi-Feature Description

Ma Li-hong Huang Yin Li Jian-hui   

  1. School of Electronic and Information Engineering∥National Engineering Techonology Research Center for Mobile Ultrasonic Detection,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2014-08-21 Revised:2014-12-08 Online:2015-03-25 Published:2015-02-10
  • Contact: 马丽红(1965-),女,博士,教授,主要从事图像视频信号处理、容错编码和数据隐藏、模式识别研究. E-mail:eelhma@scut.edu.cn
  • About author:马丽红(1965-),女,博士,教授,主要从事图像视频信号处理、容错编码和数据隐藏、模式识别研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China(NSFC)(61471173)

摘要: 针对超分辨率重构字典对结构区分度不够、在最优匹配原子搜索中耗时太长的问题,提出了一种多特征联合的分级字典(MFJD).首先,分别用边缘块梯度特征和纹理块局部二值模式(LBP)特征来构建两种分类字典,用于逼近不同类型结构;其次,采用树结构来聚类原子,实现同一字典下的快速原子匹配;最后,引入双边总变分(BTV)正则项来约束重构结果. 实验表明:与经典稀疏编码超分辨率重构(SCSR)算法相比,MFJD 多特征联合的分级字典使重构图像的 PSNR 值提高了 0.2424dB,使平均结构相似度(MSSIM)和特征相似度(FSIM)分别提高了0. 0043 和0. 0056;由于结构分类字典维数降低,重构时间
降至 SCSR 算法的 22. 77%.

关键词: 超分辨率重构, 结构分类, 多特征描述, LBP 纹理, 双边总变分

Abstract: A multi-feature joint dictionary (MFJD) is suggested to improve the structural distinction in dictionary training and to accelerate the atom matching in sparse reconstruction. Firstly,two dictionaries branched respectively for edge-and texture-descriptions are created using gradient and LBP operators. Secondly,tree structures are intro-duced to represent the hierarchical clustering of atoms,which leads to a quick atom searching. Then,bilateral total variation (BTV) regularization is employed to achieve the optimal resolution. Experimental results show that,in comparison with the sparse coding super-resolution reconstruction (SCSR) algorithm,MFJD averagely improves the PSNR,MSSIM and FSIM of an image by 0. 2424dB,0. 0043 and 0. 0056,respectively,and reduces the recon-struction time to approximately 22.77% of that of SCSR algorithm owing to the reduction of dictionary dimensionality.

Key words: super-resolution reconstruction, structure classification, multi-feature description, LBP texture, bilateral total variation

中图分类号: