华南理工大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (2): 107-113.doi: 10.3969/j.issn.1000-565X.2015.02.016

• 机械工程 • 上一篇    下一篇

矩形截面型材三维拉弯成形的回弹预测

滕菲1 梁继才1 张万喜1 王雪2 高嵩1   

  1. 1. 大连理工大学 汽车工程学院∥工业装备结构分析国家重点实验室,辽宁 大连 116024;2. 吉林大学 材料科学与工程学院,吉林 长春 130022
  • 收稿日期:2014-08-06 修回日期:2014-11-12 出版日期:2015-02-25 发布日期:2014-12-31
  • 通信作者: 滕菲(1985-),女,博士生,主要从事汽车材料加工研究. E-mail:tengfei325@126.com
  • 作者简介:滕菲(1985-),女,博士生,主要从事汽车材料加工研究.
  • 基金资助:

    国家工信部重点产业振兴和改造技术专项(吉工信投资[2011]350)

Springback Prediction of Rectangular Profiles During Three-Dimension Stretch Bending Forming

Teng Fei1 Liang Ji-cai1 Zhang Wan-xi1 Wang Xue2 Gao Song1   

  1. 1. School of Automotive Engineering/ /State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,Liaoning,China; 2. College of Materials Science and Engineering,Jilin University,Changchun 130022,Jilin,China
  • Received:2014-08-06 Revised:2014-11-12 Online:2015-02-25 Published:2014-12-31
  • Contact: 滕菲(1985-),女,博士生,主要从事汽车材料加工研究. E-mail:tengfei325@126.com
  • About author:滕菲(1985-),女,博士生,主要从事汽车材料加工研究.
  • Supported by:
    Supported by the National Ministry Key Industrial Revitalization and Transformation of Special Technology(Minis-try of Jilin Province([2011]350)

摘要: 设计了用于三维拉弯成形的、可重构的柔性模具,并采用支持向量回归机和有限元模拟对柔性三维拉弯成形的回弹进行预测. 使用有限元法分析了对回弹量影响较大的6个因素(包括材料参数、几何参数和工艺参数),以及它们对回弹的影响趋势. 选用这6个参数设计有限元三维拉弯模拟实验,并用模拟结果训练和检验支持向量回归机回弹预测模型. 通过与广泛应用的神经网络预测方法的预测值和有限元模拟试验结果的比较,检验该回弹预测模型的准确性. 研究发现,该模型与神经网络相比具有更高的准确度,在试验中根据该模型预测的回弹量对模具型面进行相应的补偿,可以有效地减小回弹和形状偏差.

关键词: 型材, 回弹预测, 支持向量回归机, 人工神经网络, 三维拉弯成形

Abstract: In this paper,first,a reconfigurable flexible die for the three-dimension stretch bending forming is de-signed,and the springback of profiles during the forming is predicted by means of the support vector regression and the finite element simulation. Then,six factors that greatly affect the springback magnitude (including material pa-rameters,geometrical parameters and process parameters) are analyzed by using the finite element method,and their impact trends on the springback are also investigated. Moreover,these six factors are employed to design a simulation of three-dimension finite-element stretch bending,and the simulated results are used to train and test the springback prediction model based on the support vector regression machine. Finally,for the purpose of verifying the proposed apringback prediction model,the predicted results are compared with those obtained by the widely-used neural network forecasting method and the finite element simulation. It is found that the proposed model is more accurate than the neural network-based method,and that,in experiments,suitable compensations to the die shape according to the springback value predicted by the model may effectively reduce the springback and the shape deviation.

Key words: profile, springback prediction, support vector regression machine, artificial neural networks, three-di-mension stretch bending forming

中图分类号: