华南理工大学学报(自然科学版) ›› 2014, Vol. 42 ›› Issue (4): 7-12,18.doi: 10.3969/j.issn.1000-565X.2014.04.002

• 动力与电气工程 • 上一篇    下一篇

基于改进差分进化算法的估计等值法

张宝珍1,2 张尧2† 林凌雪2   

  1. 1.海南大学 机电工程学院,海南 海口 570228; 2.华南理工大学 电力学院,广东 广州 510640
  • 收稿日期:2013-09-29 修回日期:2014-01-01 出版日期:2014-04-25 发布日期:2014-03-03
  • 通信作者: 张尧(1948-),男,教授,博士生导师,主要从事电力系统运行与稳定分析、高压直流输电等研究. E-mail:epyzhang@scut.edu.cn
  • 作者简介:张宝珍(1969-),女,博士生,副教授,主要从事电力系统安全稳定分析、动态等值研究.E-mail:baozhen-zh@163.com
  • 基金资助:

    国家“863” 计划项目 (2011AA05A102);华南理工大学中央高校基本科研业务费专项资金资助项目(2013ZM0028)

Estimation Equivalence Method Based on Modified Differential Evolution Algorithm

Zhang Bao- zhen1,2 Zhang Yao2 Lin Ling- xue2   

  1. 1.School of Mechanic and Electrical Engineering,Hainan University,Haikou 570228,Hainan,China;2.School of Electric Power,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2013-09-29 Revised:2014-01-01 Online:2014-04-25 Published:2014-03-03
  • Contact: 张尧(1948-),男,教授,博士生导师,主要从事电力系统运行与稳定分析、高压直流输电等研究. E-mail:epyzhang@scut.edu.cn
  • About author:张宝珍(1969-),女,博士生,副教授,主要从事电力系统安全稳定分析、动态等值研究.E-mail:baozhen-zh@163.com
  • Supported by:

    国家“863” 计划项目 (2011AA05A102);华南理工大学中央高校基本科研业务费专项资金资助项目(2013ZM0028)

摘要: 为解决现有的用于电力系统在线安全分析的估计等值法精度低、收敛性弱的问题,给出了较精细的等值发电机加综合负荷的等值系统模型,以提高等值精度,并提出了基于差分进化( DE) 算法的等值系统参数辨识策略.为解决 DE 存在的早熟收敛问题,构造变异方式不同的两个差分进化群,两群并行进化且定时交换信息,以增加种群的多样性,改善算法的收敛性.仿真结果表明: 改进的双群体 DE 算法有效解决了等值系统的参数辨识问题,算法简单、收敛快,辨识的参数精度高、鲁棒性好; 所建立的等值系统模型更符合电网实际,等值后外部系统的动态特性基本被保留; 所提基于改进DE 的估计等值法可用于在线大规模外部系统的等值化简.

关键词: 动态等值, 估计等值法, 发电机模型, 综合负荷模型, 差分进化算法, 参数辨识

Abstract:

As the existing estimation equivalence method for online safety analysis of power systems is of low accu-racy and weak convergence,a refined model of equivalent system,which comprises the equivalent generator andthe composite load,is proposed to improve the accuracy of dynamic equivalence,and a parameter identificationstrategy based on differential evolution (DE) algorithm is presented,Moreover,in order to overcome the prematureconvergence of DE,two differential evolution swarms with different variations are constructed,which help to in-crease the diversity of swarms and improve the convergence of DE algorithm through parallel evolution and regularmessage exchange.Simulated results show that (1) the improved DE algorithm with parallel swarms is effective inthe parameter identification of equivalent systems and is of simplicity and rapid convergence; (2) it helps to identi-fy parameters with high accuracy and strong robustness; (3) the obtained equivalent system model accords wellwith practical power systems and effectively preserves the main dynamic characteristics of the external system; and(4) the new estimation equivalence method is applicable for the online equivalent simplification of large- scale ex-ternal power systems.

Key words: dynamic equivalence, estimation equivalence method, generator model, composite load model, diffe-rential evolution algorithm, parameter identification

中图分类号: