华南理工大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (10): 142-145.doi: 1000-565X(2012)10-0142-04

• 校庆专辑 • 上一篇    下一篇

关于测度的重分形分析

吴敏   

  1. 华南理工大学 数学系,广东 广州 510640
  • 收稿日期:2012-08-01 出版日期:2012-10-25 发布日期:2012-09-01
  • 通信作者: 吴敏(1956-) ,女,教授,博士生导师,主要从事分形几何研究. E-mail:wumin@ scut.edu.cn
  • 作者简介:吴敏(1956-) ,女,教授,博士生导师,主要从事分形几何研究.
  • 基金资助:

    国家自然科学基金资助项目( 10571063, 11071082)

On Multifractal Analysis of Measures

Wu Min   

  1. Department of Mathematics,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2012-08-01 Online:2012-10-25 Published:2012-09-01
  • Contact: 吴敏(1956-) ,女,教授,博士生导师,主要从事分形几何研究. E-mail:wumin@ scut.edu.cn
  • About author:吴敏(1956-) ,女,教授,博士生导师,主要从事分形几何研究.
  • Supported by:

    国家自然科学基金资助项目( 10571063, 11071082)

摘要: 测度的重分形分析是分形几何的一个重要研究方向,它广泛应用于动力系统、湍流、降雨量模型、地震和金融时间序列模型. 发展重分形测度的数学理论和方法至关重要.文中简要阐述测度的重分形分析的基本思想和方法,并介绍笔者及其课题组在该领域取得的主要研究成果.

关键词: 重分形, 自相似测度, Moran 测度, 加倍测度, 点态维数

Abstract:

Multifractal analysis of measures is known as an important research direction of fractal geometry. It has been widely used in dynamical systems,turbulence analysis,rainfall modeling,earthquake analysis,and financial time series modeling. Developing the mathematical theory and methods of multifractal measures is of utmost importance.This paper briefly explains the basic ideas and methods of the multifractal analysis of measures and describes the author's major findings and achievements in this field.

Key words: multifractal, self-similar measure, Moran measure, doubling measure, pointwise dimension