华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (8): 80-82,94.

• • 上一篇    下一篇

压弯钢筋混凝土柱正截面极限承载力的预测——基于BP神经网络技术

焦俊婷1 叶英华刁波1 于霖冲2   

  1. 1. 北京航空航天大学 土木工程系, 北京 100083; 2. 嘉应学院 土木工程系, 广东 梅州 514015
  • 收稿日期:2004-11-08 出版日期:2005-08-25 发布日期:2005-08-25
  • 通信作者: 焦俊婷(1968-) ,女,副教授,博士生,主要从事钢筋混凝土结构非线性研究. E-mail:ylc@jyu. edu. cn
  • 作者简介:焦俊婷(1968-) ,女,副教授,博士生,主要从事钢筋混凝土结构非线性研究.
  • 基金资助:

    国家自然科学基金资助项目(50178008)

Forecasting of the Terminal Bearing Capacity in Sections of Reinforced Concrete Column Under Bending and Compression:On the Basis of BP Neural Network

Jiao Jun-tingYe Ying-huaDiao BoYu Lin-chong2   

  1. 1. Dept. of Civil Engineering, Beijing Univ. of Aeronautics & Astronautics, Beijing 100083, China;2. Dept. of Civil Engineering, J iaying Univ. , Meizhou 514015, Guangdong, China)
  • Received:2004-11-08 Online:2005-08-25 Published:2005-08-25
  • Contact: 焦俊婷(1968-) ,女,副教授,博士生,主要从事钢筋混凝土结构非线性研究. E-mail:ylc@jyu. edu. cn
  • About author:焦俊婷(1968-) ,女,副教授,博士生,主要从事钢筋混凝土结构非线性研究.
  • Supported by:

    国家自然科学基金资助项目(50178008)

摘要: 提出双向压弯钢筋混凝土柱正截面极限承载力的预测模型. 以影响钢筋混凝土柱正截面极限承载力的主要因素(如:截面尺寸、混凝土强度、加载角度及配筋率等) 为参数,用数值模拟结果为训练样本,建立了柱正截面极限承载力的BP神经网络预测模型. 经验证,该模型对双向压弯钢筋混凝土柱正截面极限承载力具有良好的预测效果.

关键词: 钢筋混凝土, 双向压弯, 承载力, 预测, 神经网络

Abstract:

A mode l is p resented to forecast the terminal bearing capacity in the sections of reinforced conc rete (RC) columns under bi-axial bending and compression. By taking the main factors affecting the bearing capacity, such as the section dimension, the concre te strength, the loading angle and the reinforce ratio, as the model parameters, and by using the numerical simulation results as the training specimens, a fo recasting model is established based on BP neural network. It is verified that the proposed model is of excellent fo recasting ability for the terminal bearing capac ity of RC columns under bi-axial bending and compression.

Key words: reinforced concrete, bi-axial bending and compression, bearing capacity, forecasting, neural network