华南理工大学学报(自然科学版) ›› 2006, Vol. 34 ›› Issue (11): 76-80.

• 土木建筑工程 • 上一篇    下一篇

基于BP神经网络的砂土液化影响因素的综合评估

潘健 刘利艳 林慧常   

  1. 1.华南理工大学 建筑学院,广东 广州 510640;2.茂名市建设工程质量监督检测站,广东 茂名 525000
  • 收稿日期:2005-11-18 出版日期:2006-11-25 发布日期:2006-11-25
  • 通信作者: 潘健(1963-),男,在职博士生,副教授,主要从事岩土工程的研究 E-mail:cvpan@scut.edu.cn
  • 作者简介:潘健(1963-),男,在职博士生,副教授,主要从事岩土工程的研究

Integrated Evaluation of Factors to Afect Liquefaction of Sandy Soil Based on BP Neural Network

Pan Jian  Liu Li-yan  Lin Hui-chang   

  1. 1.School of Architecture and Civil Engineering,South China Univ.of Teeh.,Guangzhou 5 10640,Guangdong,China;2.Maoming Quality Supervision Checkpoint of Constructing Engineering,Maoming 525000,Guangdong,China
  • Received:2005-11-18 Online:2006-11-25 Published:2006-11-25
  • Contact: 潘健(1963-),男,在职博士生,副教授,主要从事岩土工程的研究 E-mail:cvpan@scut.edu.cn
  • About author:潘健(1963-),男,在职博士生,副教授,主要从事岩土工程的研究

摘要: 为了充分考虑影响砂土液化的多种因素,选取不同的参数组合,建立不同的砂土液化判别BP神经网络模型,编写了饱和砂土液化判别BP神经网络程序SLV,并根据现场实测资料进行计算和分析.结果表明,地震作用是液化的直接原因,砂土处于饱和状态是液化的前提条件,影响液化的主要因素包括标准贯入锤击数、砂土不均匀系数以及地震剪应力比.文中建立的BP神经网络模型具有高度的分类和识别能力,可用于评估砂土液化的影响因素.

关键词: 砂土, 液化, 影响因素, 评估, 神经网络, Vogl快速算法

Abstract:

In order to investigate various factors to affect the liquefaction of sandy soil.different BP neural network models for liquefaction evaluation were established based on different combinationS 0f the input neurons.A BP neural network-based program,namely SLV,was then presented for the liquefaction evaluation of saturated sandv soil.Some comparison analyses were finally carried out according to the results of field observation.It is shown that the earthquake action is a direct cause of the liquefaction ,that the saturation state of sandy soil is the precondition of the liquefaction,and that the standard penetration blow.count,the non.uniformity coefficient and the shearing stress ratio are the main influencing factors of the liquefaction.Moreover , it is indicated that the proposed BP neural net.work model can efectively evaluate the factors to affect the liquefaction of sandy soil due to its strong classifying and distinguishing ability.

Key words: sand, liquefaction, influencing factor, evaluation, neural network, Vogl fast algorithm