华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (12): 23-27,33.

• 机械工程 • 上一篇    下一篇

水辅助注塑的GA-LMBP 逆向神经网络建模与预测

黄汉雄 何建民 刘旭辉 邓志武   

  1. 华南理工大学 工业装备与控制工程学院,广东 广州 510640
  • 收稿日期:2006-10-16 出版日期:2007-12-25 发布日期:2007-12-25
  • 通信作者: 黄汉雄(1963-) ,男,教授,博士生导师,主要从事聚合物加工装备及工程研究. E-mail:mmhuang@ scut.edu. cn
  • 作者简介:黄汉雄(1963-) ,男,教授,博士生导师,主要从事聚合物加工装备及工程研究.
  • 基金资助:

    广东省自然科学基金资助项目( 06025643 ) ;教育部留学回国人员科研启动基金资助项目

Modeling and Prediction of Water-Assisted Injection Molding Based on GA-LMßP Inverse Neural Network

Huαng Han-xiong  He Jian-min  Liu Xu-hui  Deng Zhi-wu   

  1. School of lndustrial Equipment and Control Engineering , South China Univ. of Tech. , Guangzhou 510640 , Guangdong , China
  • Received:2006-10-16 Online:2007-12-25 Published:2007-12-25
  • Contact: 黄汉雄(1963-) ,男,教授,博士生导师,主要从事聚合物加工装备及工程研究. E-mail:mmhuang@ scut.edu. cn
  • About author:黄汉雄(1963-) ,男,教授,博士生导师,主要从事聚合物加工装备及工程研究.
  • Supported by:

    广东省自然科学基金资助项目( 06025643 ) ;教育部留学回国人员科研启动基金资助项目

摘要: 水辅助注塑是一种新的塑料注塑技术,由于其过程的复杂性,难以采用数学方法建立其过程的数学模型.因此,文中提出一种遗传算法( GA) 与LMBP 神经网络算法相结合的逆向神经网络(简称GA-LMBP) ,采用一系列的实验结果,建立水辅助注塑的过程模型.交叉验证表明,该模型的预测值与实验值较吻合.输入水辅助注塑制品上不同位直的壁厚,该模型可快速而准确地预测相应的加工参数,包括:熔体注射量、注水压力、注水延迟时间和熔体温度.

关键词: 水辅助注塑, LMBP 神经网络, 遗传算法, 逆向过程, 建模

Abstract:

Water-assisted injection molding (W AIM) is a new injection molding technique whose mathematical model is difficult to establish by mathematical method due to the process complexity. In this work , an inverse neural network named GA-LMBP is proposed by combining the genetic algorithm (GA) with the Levenberg-Marquardt back-propagation (LMBP) neural network. Based on the proposed GA-LMBP , a model to predict the W AIM process is developed according to a series of experimental results. It is found from the cross-validation that there is a good agreement between the predicted results by the model and the experimental ones , and that , with the thickness at different locations of molded parts as the system input , the model can quickly and accurately predict such processing parameters as short-shot size , water pressure , water injection delay time , and melt temperature.

Key words: water-assisted injection molding, Levenberg-Marquardt back-propagation neural network, genetic algorithm, inverse process, modeling