华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (10): 117-123.

• 创刊五十周年纪念专辑 • 上一篇    下一篇

纳米复合Li2 SO4 质子传导膜H2 S 中温燃料电池

钟理1 Chuang Karl2   

  1. 1.华南理工大学 化工与能源学院,广东 广州 510640; 2. 阿伯塔大学 化工与材料工程系,加拿大 艾德蒙顿 T6G 2G6
  • 收稿日期:2007-01-23 出版日期:2007-10-25 发布日期:2007-10-25
  • 通信作者: 钟理(1956-) ,男,教授,博士生导师,主要从事燃料电池和化学工艺研究. E-mail:celzhong@scut. edu.cn
  • 作者简介:钟理(1956-) ,男,教授,博士生导师,主要从事燃料电池和化学工艺研究.
  • 基金资助:

    广东省自然科学基金资助项目(07006531)

A H2 S Intermediate-Temperature Fuel Cell with Nano-Composite Li2 SO4 Proton-Conducting Membran

Zhong Li1  Chuang Karl2   

  1. 1.School of Chemical and Energy Engineering,South China Univ.of Tech.,Guangzhou 5 10640,Guangdong,China;2.Dept.of Chemical and Materials Engineering,Univ.of Alberta,Edmonton T6G 2G6,Canad
  • Received:2007-01-23 Online:2007-10-25 Published:2007-10-25
  • Contact: Zhong Li (born in 1956-) , male , professor,doctoral supervisor , mainly researches on fuel cell and Chemical Technology. E-mail:celzhong@scut. edu.cn
  • About author:Zhong Li (born in 1956-) , male , professor,doctoral supervisor , mainly researches on fuel cell and Chemical Technology.
  • Supported by:

    Supported by Guangdong Provincial Natural Science Foundation (07006531)

摘要: 开发了一种制备纳米复合Li 2 SO4 质子传导电解质和膜电极组装(MEA) 的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA. 这就使得MEA 的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM) 和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA 的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA 在H2 S 环境中很稳定.电池结构为H2 S , ( MoS2/NiS +Ag+ 电解质量+淀粉)/Li2 SO4 + Al2O3/( NiO + Ag +电解质量+淀粉) ,空气、MEA 厚为0.8mm 、电解质组成为65% Li2SO4 + 35% Al2 O3 的单电池在680℃时产生最大功率密度为130 mW/cm2 ,相应的电流密度为200mW/cm2

关键词: 固体氧化物燃料电池, 膜电极组装(MEA), 硫化氢, 质子传导膜

Abstract:

A nano-composite Li2SO4 proton-conducting electrolyte and a new preparation procedure of membrane-electrode assembly (MEA) were developed for the electrochemical oxidation of H2S. Instead of the traditional screen-printing method , in the MEA , both the anode and cathode catalysts were simultaneously pressed to form the cell with nano-composite electrolyte. This allows the design to possess some advantageous configurations that can diminish the Ohmic resistance between the electrolyte and the electrodes , enhance the mechanical and electrical properties , and improve the performance of fuel cells due to the membrane thickness reduction and the good contact between the electrolyte and the electrodes. The electrolyte was then characterized by scanning electron microscope (SEM) and electrochemical impedance spectrum techniques. The results indicate that the nano-composite materials improve the electrolyte integrity , and that no cross-over of H25 through the improved electrolyte occurs due to its high density , good compactivity and gas-impermeability. Moreover , MEA is stable in H25 stream. For a single cell with the configuration of H2S, (MoS2/NiS + Ag + electrolyte + starch)/Li2SO4 + Al 2O3/ ( NiO + Ag + electrolyte + starch) and air in a MEA thickness of 0. 8 mm and a Li2 SO4 to Al2O3 weight ratio of 65: 35 , the maximum power density is about 130 m W/cm2 and the corresponding current density is about 200 mA/ cm2 at 680 ℃ .

Key words: solid oxide fuel cell, membrane-electrode assembly, hydrogen sulfide, proton-conducting membrane