华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (8): 45-55.doi: 10.12141/j.issn.1000-565X.230513

• 交通运输工程 • 上一篇    下一篇

基于轻量化CenterNet的智能车辆目标检测算法

岳永恒(), 宁睿厚   

  1. 东北林业大学 土木与交通学院,黑龙江 哈尔滨 150040
  • 收稿日期:2023-08-08 出版日期:2024-08-25 发布日期:2023-12-27
  • 作者简介:岳永恒(1973 —),男,博士,副教授,主要从事交通安全及控制理论及应用。E-mail: yueyyh@126.com
  • 基金资助:
    黑龙江省重点研发项目(JD22A014);国家车辆事故深度调查体系资助项目(NAIS-ZL-ZHGL-2020018);国家自然科学基金资助项目(62173107)

Intelligent Vehicle Object Detection Algorithm Based on Lightweight CenterNet

YUE Yongheng(), NING Ruihou   

  1. School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,Heilongjiang,China
  • Received:2023-08-08 Online:2024-08-25 Published:2023-12-27
  • About author:岳永恒(1973 —),男,博士,副教授,主要从事交通安全及控制理论及应用。E-mail: yueyyh@126.com
  • Supported by:
    the Key Research and Development Plan Projects of Heilongjiang Province(JD22A014);the National Automobile Accident In-Depth Investigation System Funding Project(NAIS-ZL-ZHGL-2020018);the National Natural Science Foundation of China(62173107)

摘要:

针对当前目标检测算法参数较多,计算量较大,导致响应速度较慢,难以推广应用于智能车辆系统的问题,提出一种改进的CenterNet目标检测算法。即应用轻量化MobileNetV3网络替换原ResNet-50网络,降低计算量;应用深度可分离的PANet替换特征增强网络,获得多尺度特征信息融合后的特征,并引入SimAM注意力机制在特征融合前强化目标特征关注度,再用SiLU激活函数替换原目标检测网络中的ReLU激活函数,增强网络学习能力。最后提出CPAN-ASFF模块对深度可分离的PANet输出多尺度特征图进行融合,提高目标检测精度。应用优化后的KITTI数据集对改进后的CenterNet目标检测算法进行训练及检测验证,结果表明:其平均准确率为80.7%,比原始CenterNet目标检测算法提高了12个百分点,其检测速度为65 f/s,其参数量为8.91 M,较原算法减少72.73%,改进后的算法在遮挡目标、重叠目标以及与背景相似目标的检测效果上表现更优。且在SODA10M数据集中,文中提出的算法的检测精度与速度也都优于当前主流算法。该研究对算法的优化及实验为智能车辆在实际工程中的应用奠定了技术支撑。

关键词: 智能车辆, 目标检测, 无先验框, CenterNet, 轻量化, 深度可分离卷积

Abstract:

Aiming at the problem that the current object detection algorithm has many parameters and larger computation amount, resulting in slower response and difficulties of application in intelligent vehicle systems, this paper proposed an improved CenterNet object detection algorithm. That is, the lightweight MobileNetV3 network was applied to replace the original ResNet-50 network to reduce the amount of computation; the depth-separable PANet was applied to replace the feature enhancement network to obtain the features after the fusion of the multi-scale feature information, and the SimAM attention mechanism was introduced to strengthen the attention of the target features before the fusion of the features, then the SiLU activation function was used to replace the original object detection network in the ReLU activation function to enhance the network learning. Finally, the CPAN-ASFF module was proposed to fuse the depth-separable PANet output multi-scale feature maps to improve the object detection accuracy. The optimized KITTI dataset was applied to train and detect the improved CenterNet object detection algorithm for validation. And the results show that its mean average precision is 80.7%, which is 12 percentage points higher than that of the original CenterNet object detection algorithm; its detection speed is 65 f/s, and its number of parameters is 8.91 M, which is 72.73% less than the original algorithm. The improved algorithm performs better in the detection of occluded objects, overlapped objects and objects similar to the background. In the SODA10M dataset, the detection accuracy and speed of the algorithm are better than the current mainstream algorithms. The optimization of the algorithm and the experiments in the paper laid the technical support for the application of intelligent vehicles in practical engineering.

Key words: intelligent vehicles, object detection, anchor-free, CenterNet, lightweight, depthwise separable convolution

中图分类号: