华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (9): 129-138.doi: 10.12141/j.issn.1000-565X.220746

• 土木建筑工程 • 上一篇    下一篇

基于NMI-FA-DELM模型的土壤热导率预测

雷宇 黄亦凡 罗学东 周盛涛 付超   

  1. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
  • 收稿日期:2022-11-13 出版日期:2023-09-25 发布日期:2023-03-15
  • 通信作者: 罗学东(1971-),男,教授,主要从事岩土工程研究。 E-mail:cugluoxd@foxmail.com
  • 作者简介:雷宇(1998-),男,博士生,主要从事岩土工程和机器学习研究。E-mail:cugleiyu@cug.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(42072309);武汉市基础研究知识创新计划项目(20220208010199);中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(CUGDCJJ202217);湖北省爆破工程重点实验室基金资助项目(HKLBEF202002)

Prediction of Soil Thermal Conductivity Based on NMI-FA-DELM Model

LEI Yu HUANG Yifan LUO Xuedong ZHOU Shengtao FU Chao   

  1. Faculty of Engineering,China University of Geosciences,Wuhan 430074,Hubei,China
  • Received:2022-11-13 Online:2023-09-25 Published:2023-03-15
  • Contact: 罗学东(1971-),男,教授,主要从事岩土工程研究。 E-mail:cugluoxd@foxmail.com
  • About author:雷宇(1998-),男,博士生,主要从事岩土工程和机器学习研究。E-mail:cugleiyu@cug.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42072309)

摘要:

土壤热导率是影响地下温度分布的重要土壤性质,在岩土工程和土木工程施工设计中有重要意义,采用合理手段对其进行预测可有效解决测量耗时长、过程复杂等问题。针对土壤热导率数据非线性和时序性等特征,文中提出一种基于归一化互信息法(NMI)下的萤火虫算法(FA)优化极限学习机(DELM)预测模型(NMI-FA-DELM)进行土壤热导率预测。该模型首先通过NMI筛选影响土壤热导率的关键参数,并将筛选后的参数作为数据集,然后用萤火虫算法优化下的极限学习机(FA-DELM)对土壤热导率进行预测,并对比统计预测方程、随机森林方法、BP神经网络模型、DELM模型、SVR(支持向量回归)模型的预测结果。研究结果表明,NMI-FA-DELM模型能有效预测土壤热导率,预测结果对应的均方根误差、平均绝对百分比误差、a10指数和决定系数分别为0.363、9.667%、0.961和0.92,其预测效果较其他预测模型更好,粘性土含量、含沙量对土壤热导率预测结果影响较大。NMI-FA-DELM模型可有效提高土壤热导率预测精度,对实际工程中预测土壤热导率有重要的指导意义。

关键词: 土壤热导率, 岩土工程, 归一化互信息, 极限学习机, 萤火虫算法

Abstract:

The thermal conductivity of soil is an important soil property, which affects the soil temperature distribution underground. It has significant practical importance in geotechnical and civil engineering design and construction. Using reasonable means to predict it can effectively solve the problems such as time-consuming and complex process. According to the characteristics of nonlinearity and timing of soil thermal conductivity data, this paper proposed a firefly algorithm (FA) optimization limit learning machine (DELM) prediction model (NMI-FA-DELM) under NMI for soil thermal conductivity prediction. The model first screened the key parameters affecting the soil thermal conductivity by NMI, and took the filtered parameters as the data set. Then the soil thermal conductivity was predicted with the FA-DELM optimized by the firefly algorithm, and the predictive results were compared with those of statistical prediction equations, random forest methods, BP neural network models, DELM models, and SVR (support vector regression) models. The results show that the NMI-FA-DELM model can effectively predict soil thermal conductivity, with corresponding root mean square error, average absolute percentage error, a10 index, and determination coefficient of 0.363, 9.667%, 0.961 and 0.92, respectively. The prediction accuracy of the NMI-FA-DELM model is better than that of other prediction models, and the content of viscous soil and sand has greater influence on the prediction results of soil thermal conductivity. This model can significantly improve the prediction accuracy of soil thermal conductivity and provides important guidance for predicting soil thermal conductivity in practical engineering applications.

Key words: soil thermal conductivity, geotechnical engineering, normalized mutual information, extreme learning machine, firefly algorithm

中图分类号: