华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (1): 84-94.doi: 10.12141/j.issn.1000-565X.220050

所属专题: 2023年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于DAEKF算法的锂离子电池主要状态在线联合估计

罗玉涛 吴志强   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2022-02-02 出版日期:2023-01-25 发布日期:2023-01-02
  • 通信作者: 罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。 E-mail:ctytluo@scut.edu.cn
  • 作者简介:罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。
  • 基金资助:
    工信部制造业高质量发展专项资金资助项目(R?2H?023?QT?001?20221009?001)

Online Joint Estimation of Main States of Lithium-Ion Battery Based on DAEKF Algorithm

LUO Yutao WU Zhiqiang   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2022-02-02 Online:2023-01-25 Published:2023-01-02
  • Contact: 罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。 E-mail:ctytluo@scut.edu.cn
  • About author:罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。
  • Supported by:
    MIIT Special Fund for High-Quality Development of Manufacturing Industry(R?2H?023?QT?001?20221009?001)

摘要:

为实现三元锂离子电池荷电状态(SOC)、能量状态(SOE)和健康状态(SOH)这3种主要状态的在线联合估计,并应对电动汽车实际使用工况中各种噪声干扰带来的开环累积误差问题,提高锂离子电池在线估计的稳定性,提出了一种基于双自适应扩展卡尔曼滤波(DAEKF)算法的三元锂离子电池多时间尺度主要状态在线联合估计方法。在二阶RC模型基础上推导DAEKF算法的状态空间方程,用带遗忘因子的递推最小二乘法(FFRLS)进行在线参数辨识,以微观时间尺度进行锂离子电池SOC和SOE的在线估计,以宏观时间尺度进行锂离子电池SOH的在线估计,从而实现锂离子电池3种主要状态的在线联合估计。最后,以NVR18650B型三元锂离子电池的不同运行工况对所提出的方法进行实验验证。实验结果表明:在两种验证工况下,文中方法都能够快速收敛辨识模型参数,微观时间尺度中SOC和SOE的估计误差均稳定保持在1%以内,宏观时间尺度中SOH的估计误差稳定保持在1.6%以内;与EKF算法相比,文中所提出的方法具有更高的估算精度以及更好的估计收敛性和稳定性。

关键词: 电动汽车, 锂离子电池, 多状态在线联合估计, 双自适应扩展卡尔曼滤波, 多时间尺度

Abstract:

In order to realize the online joint estimation of three major states of ternary lithium-ion battery, namely SOC (State of charge), SOH (State of Health) and SOE (State of Energy), and to deal with the open-loop cumulative error caused by various noises in the actual use of electric vehicles, and, furthermore, to improve the stability of online estimation of lithium-ion battery, this paper proposed an online joint estimation method of the three major states of ternary lithium-ion battery in multiple time scales based on double adaptive extended Kalman filter (DAEKF). In the investigation, the state space equation of DAEKF algorithm is derived based on the second-order RC model, and the parameters are identified online by the recursive least square method with forgetting factor (FFRLS). The SOC and SOE of lithium-ion battery are estimated online in the micro time scale, and the SOH of lithium-ion battery is estimated online in the macro time scale. Thus, the online joint estimation of the three major states of lithium-ion battery can be realized. Finally, the proposed method was verified by experiments under different operating conditions of NVR18650B ternary lithium-ion battery. The experimental results show that the proposed method can rapidly converge the model parameters under the two verification conditions; that the estimation errors of SOC and SOE in the micro time scale are kept within 1%, and the estimation errors of SOH in the macro time scale are kept within 1.6%; and that, as compared with the EKF algorithm, the proposed method has a higher estimation accuracy and better estimation convergence and stability.

Key words: electric vehicle, lithium-ion battery, multi-state online joint estimation, double adaptive extended Kalman filter, multi-time scale

中图分类号: