华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (11): 141-154.doi: 10.12141/j.issn.1000-565X.210747
所属专题: 2022年土木建筑工程
• 土木建筑工程 • 上一篇
周小文 许衍彬 赵仕威 陈昊 张昌辉
收稿日期:
2021-11-29
出版日期:
2022-11-25
发布日期:
2022-03-11
通信作者:
赵仕威(1991-),男,博士,副教授,主要从事颗粒力学理论与数值方法研究。
E-mail:swzhao@scut.edu.cn
作者简介:
周小文(1965-),男,博士,教授,主要从事土的基本性质及颗粒力学理论研究.E-mail:xwzhou@scut.edu.cn.
基金资助:
ZHOU Xiaowen XU Yanbin ZHAO Shiwei CHEN Hao ZHANG Changhui
Received:
2021-11-29
Online:
2022-11-25
Published:
2022-03-11
Contact:
赵仕威(1991-),男,博士,副教授,主要从事颗粒力学理论与数值方法研究。
E-mail:swzhao@scut.edu.cn
About author:
周小文(1965-),男,博士,教授,主要从事土的基本性质及颗粒力学理论研究.E-mail:xwzhou@scut.edu.cn.
Supported by:
摘要:
颗粒介质的细观组构各向异性与宏观力学特性有密切的跨尺度联系,而颗粒形态特征对其组构各向异性的演化又起着重要的作用。除了颗粒的球度、棱角度、粗糙度以外,作者关注到颗粒形态特征中的偏心也是一个重要的影响因素,而至今很少有关于它的研究。本文采用所在团队自编的非球离散元程序SudoDEM构建了基于扩展超级椭球的偏心颗粒模型,开展了不同偏心颗粒的真三轴剪切模拟,探究偏心率对颗粒介质次生各向异性的影响,进而揭示颗粒介质宏观力学响应的细观机理。结果表明:细观组构各向异性随偏心率增大呈不同程度发展,共同承担着宏观抗剪强度的提升,同时配位数更大,滑动接触比例更高,接触力网格不均匀性也愈明显,这主要因为颗粒偏心增强了颗粒间的互锁咬合;法向接触力在次生各向异性中权重最大,法向支向量各向异性可忽略不计,切向接触力与切向支向量的各向异性受颗粒偏心影响较为敏感,在偏心颗粒试样中对强度贡献不可忽略;因偏心率而提高的弱接触、滑动接触比例间接导致了法向接触力各向异性向切向接触力各向异性转化。
中图分类号:
周小文, 许衍彬, 赵仕威, 等. 偏心率对颗粒介质次生各向异性的影响[J]. 华南理工大学学报(自然科学版), 2022, 50(11): 141-154.
ZHOU Xiaowen, XU Yanbin, ZHAO Shiwei, et al. Influence of Eccentricity on Induced Anisotropy of Granular Media[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(11): 141-154.
1 | 蒋明镜 .现代土力学研究的新视野——宏微观土力学[J].岩土工程学报,2019,41(2):195-254. |
JIANG Ming-jing .New Paradigm for modern soil mecha-nics:geomechanics from micro to macro[J].Chinese Journal of Geotechnical Engineering,2019,41(2):195-254. | |
2 | 孙其诚,王光谦 .颗粒物质力学导论[M].北京:科学出版社,2009. |
3 | 丁小彬,施钰,陈俊生 .基于三维离散元的大直径钢圆筒下沉侧摩阻力[J].华南理工大学学报(自然科学版),2020,48(4):15-27. |
DING Xiaobing, SHI Yu, CHEN Junsheng .Side friction of large-diameter steel cylinder simulated using 3D discrete element method [J].Journal of South China University of Technology (Natural Science Edition),2020,48(4):15-27. | |
4 | 杨仲轩,李相崧,明海燕 .砂土各向异性和不排水剪切特性研究[J].深圳大学学报理工版,2009,26(2):158-163. |
YANG Zhongxuan, LI Xiangsong, MING Haiyan .Research on anisotropy and undrained shear properties of sand[J].Journal of Shenzhen University Science and Technology Edition,2009,26(2):158-163. | |
5 | 蒋明镜,张安,付昌,等 .各向异性砂土宏微观特性三维离散元分析[J].岩土工程学报,2017,39(12):2165-2172. |
JIANG Mingjing, ZHANG An, FU Chang,et al .Three-dimensional discrete element analysis of macro and micro properties of anisotropic sand[J].Chinese Journal of Geotechnical Engineering,2017,39(12):2165-2172. | |
6 | CASAGRANDE A .Shear failure of anisotropic materials[J].Journal of Boston Society of Civil Engineers,1944,31:74-87. |
7 | ODA M, NEMAT-NASSER S, KONISHI J .Stress-induced anisotropy in granular masses[J].Soils and Foundations,1985,25(3):85-97. |
8 | FAZEKAS S, TÖRÖK J, KERTÉSZ J .Critical packing in granular shear bands[J].Physical Review E,2007,75(1):11302. |
9 | LEMIEUX P A, DURIAN D J .From avalanches to fluid flow:a continuous picture of grain dynamics down a heap[J].Physical Review Letters,2000,85(20):4273. |
10 | 戴北冰,杨峻,刘锋涛,等 .散粒土自然堆积的宏细观特征与形成机制[J].岩土工程学报,2019,41(S2):57-60. |
DAI Beibing, YANG Jun, LIU Fengtao,et al .Macro-and micro-properties and formation mechanisms of granular piles [J].Chinese Journal of Geotechnical Engineering,2019,41(S2):57-60. | |
11 | ZHAO C F, PINZÓN G, WIEBICKE M,et al .Evolution of fabric anisotropy of granular soils:X-ray tomography measurements and theoretical modelling[J].Computers and Geotechnics,2021,133:104046. |
12 | ZHAO J, GUO N .The interplay between anisotropy and strain localisation in granular soils:a multiscale insight[J].Géotechnique,2015,65(8):642-656. |
13 | 曹威 .定轴剪切条件下各向异性砂土本构规律与模型研究[D].北京:清华大学,2018. |
14 | YU H, ZENG X, LI B,et al .Effect of fabric anisotropy on liquefaction of sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2013,139(5):765-774. |
15 | ROTHENBURG L, BATHURST R J .Analytical study of induced anisotropy in idealized granular materials[J].Geotechnique,1989,39(4):601-614. |
16 | CUI L, O’SULLIVAN C .Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus[J].Géotechnique,2006,56(7):455-468. |
17 | CUI L, O’SULLIVAN C, O’NEILL S .An analysis of the triaxial apparatus using a mixed boundary three-dimensional discrete element model[J].Geotechnique,2007,57(10):831-844. |
18 | GUO N, ZHAO J .The signature of shear-induced anisotropy in granular media[J].Computers and Geotechnics,2013,47:1-15. |
19 | GONG J, LIU J .Mechanical transitional behavior of binary mixtures via DEM:effect of differences in contact-type friction coefficients[J].Computers and Geotechnics,2017,85:1-14. |
20 | LU G, THIRD J R, MÜLLER C R .Discrete element models for non-spherical particle systems:from theoretical developments to applications[J].Chemical Engineering Science,2015,127:425-465. |
21 | JIANG M, SHEN Z, WANG J .A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J].Computers and Geotechnics,2015,65:147-163. |
22 | ZHAO J, GUO N .Rotational resistance and shear-induced anisotropy in granular media[J].Acta Mechanica Solida Sinica,2014,27(1):1-14. |
23 | ZHOU B, HUANG R, WANG H,et al .DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials[J].Granular Matter,2013,15(3):315-326. |
24 | ZHAO S, EVANS T M, ZHOU X .Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects[J].International Journal of Solids and Structures,2018,150:268-281. |
25 | ZHAO S, ZHANG N, ZHOU X,et al .Particle shape effects on fabric of granular random packing[J].Powder Technology,2017,310:175-186. |
26 | T-T NG .Fabric evolution of ellipsoidal arrays with different particle shapes[J].Journal of Engineering Mechanics,2001,127(10):994-999. |
27 | FONSECA J, O’SULLIVAN C, COOP M R,et al .Quantifying the evolution of soil fabric during shearing using directional parameters[J].Géotechnique,2013,63(6):487-499. |
28 | OUADFEL H, ROTHENBURG L .Stress-force-fabric’relationship for assemblies of ellipsoids[J].Mechanics of Materials,2001,33(4):201-221. |
29 | CHEN R P, LIU Q W, WU H N,et al .Effect of particle shape on the development of 2D soil arching[J].Computers and Geotechnics,2020,125:103662. |
30 | TIAN J, LIU E, HE C .Shear band analysis of granular materials considering effects of particle shape[J].Acta Mechanica,2020,231(11):4445-4461. |
31 | RUI S, GUO Z, SI T,et al .Effect of particle shape on the liquefaction resistance of calcareous sands[J].Soil Dynamics and Earthquake Engineering,2020,137:106302. |
32 | MORIMOTO T, OTSUBO M, KOSEKI J .Microscopic investigation into liquefaction resistance of pre-sheared sand:Effects of particle shape and initial anisotropy[J].Soils and Foundations,2021,61(2):335-351. |
33 | ZHAO S, ZHOU X .Effects of particle asphericity on the macro-and micro-mechanical behaviors of granular assemblies[J].Granular Matter,2017,19(2):19-38. |
34 | NIE Z, ZHU Y, WANG X,et al .Investigating the effects of Fourier-based particle shape on the shear behaviors of rockfill material via DEM[J].Granular Matter,2019,21(2):1-15. |
35 | AZÉMA E, RADJAI F, DUBOIS F .Packings of irregular polyhedral particles:strength,structure,and effects of angularity[J].Physical Review E,2013,87(6):62203. |
36 | ZHAO S, ZHOU X, LIU W .Discrete element simulations of direct shear tests with particle angularity effect[J].Granular Matter,2015,17(6):793-806. |
37 | AZÉMA E, RADJAI F, SAINT-CYR B,et al .Rheology of three-dimensional packings of aggregates:microstructure and effects of nonconvexity[J].Physical Review E,2013,87(5):52205. |
38 | 邹宇雄,马刚,李易奥,等 .抗转动对颗粒材料组构特性的影响研究[J].岩土力学,2020,41(8):2829-2838. |
ZOU Yuxiong, MA Gang, LI Yiao,et al .Research on the influence of anti-rotation on the fabric characteristics of granular materials[J].Rock and Soil Mechanics,2020,41(8):2829-2838. | |
39 | CHEN H, ZHAO S, ZHOU X .DEM investigation of angle of repose for super-ellipsoidal particles[J].Particuology,2020,50:53-66. |
40 | NOUGUIER-LEHON C, CAMBOU B, VINCENS E .Influence of particle shape and angularity on the behaviour of granular materials:a numerical analysis[J].International Journal for Numerical and Analytical Me-thods in Geomechanics,2003,27(14):1207-1226. |
41 | AZÉMA E, RADJA I F .Stress-strain behavior and geometrical properties of packings of elongated particles[J].Physical Review E,2010,81(5):51304. |
42 | GONG J, LIU J .Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method[J].Particuology,2017,32:49-62. |
43 | XIE Y H, YANG Z X, BARRETO D,et al .The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials[J].Granular Matter,2017,19(2):35. |
44 | BARR A H .Superquadrics and angle-preserving transformations[J].IEEE Computer Graphics and Applications,1981,1(1):11-23. |
45 | ZHAO S, ZHAO J .A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media[J].International Journal for Numerical and Analytical Methods in Geomechanics,2019,43(13):2147-2169. |
46 | ZHAO S, ZHAO J .SudoDEM:unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles[J].Computer Physics Communications,2021,259:107670. |
47 | ZHOU W, WU W, MA G,et al .Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM[J].Granular Matter,2017,19(4):1-15. |
48 | JAMIOLKOWSKI M, KONGSUKPRASERT L, LO-PRESTI D C .Characterization of gravelly geomaterials[J].Asian Institute of Technology,2004:2,29-56 . |
49 | THORNTON C, ANTONY S J .Quasi-static shear deformation of a soft particle system[J].Powder Technology,2000,109(1/2/3):179-191. |
50 | GOLDENBERG C, GOLDHIRSCH I .Friction enhances elasticity in granular solids[J].Nature,2005,435(7039):188-191. |
51 | PEREZ J C L, KWOK C Y, HUANG X,et al .Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework[J].Soils and Foundations,2016,56(1):152-159. |
52 | CRUZ F DA, EMAM S, PROCHNOW M,et al .Rheophysics of dense granular materials:discrete simulation of plane shear flows[J].Physical Review E,2005,72(2):21309. |
53 | NG T T .Particle shape effect on macro-and micro-behaviors of monodisperse ellipsoids[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(4):511-527. |
54 | CHRISTOFFERSEN J, MEHRABADI M M, NEMAT-NASSER S .A micromechanical description of granular material behavior[J].Journal of Applied Mechanics,1981,48(2):339-344. |
55 | KOZICKI J, TEJCHMAN J, H-B MÜHLHAUS .Discrete simulations of a triaxial compression test for sand by DEM[J].International Journal for Numerical and Analytical Methods in Geomechanics,2014,38(18):1923-1952. |
56 | KYRYLYUK A V, PHILIPSE A P .Effect of particle shape on the random packing density of amorphous solids[J].Physica Status Solidi,2011,208(10):2299-2302. |
57 | THORNTON C .Numerical simulations of deviatoric shear deformation of granular media[J].Géotechnique,2000,50(1):43-53. |
58 | ROTHENBURG L, KRUYT N P .Critical state and evolution of coordination number in simulated granular materials[J].International Journal of Solids and Structures,2004,41(21):5763-5774. |
59 | ZHAO X, EVANS T M .Numerical analysis of critical state behaviors of granular soils under different loading conditions[J].Granular Matter,2011,13(6):751-764. |
60 | SANTAMARINA J C, CHO G C .Soil behaviour:the role of particle shape[C]∥Advances in geotechnical engineering:the Skempton conference.Proceedings of a three day conference on advances in geotechnical engineering,organised by the Institution of Civil Engineers and held at the Royal Geographical Society.London:Thomas Telford,2004:604-617. |
61 | ALONSO-MARROQUIN F, LUDING S, HERRMANN H J,et al .Role of anisotropy in the elastoplastic response of a polygonal packing[J].Physical Review E,2005,71(5):51304. |
62 | AZÉMA E, RADJAI F .Force chains and contact network topology in sheared packings of elongated particles[J].Physical Review E,2012,85(3):31303. |
63 | ESTRADA N, AZÉMA E, RADJAI F,et al .Identification of rolling resistance as a shape parameter in sheared granular media[J].Physical Review E,2011,84(1):11306. |
64 | RADJAI F, WOLF D E, JEAN M,et al .Bimodal character of stress transmission in granular packings[J].Physical Review Letters,1998,80(1):61-64. |
65 | FOROUTAN T, MIRGHASEMI A A .CFD-DEM model to assess stress-induced anisotropy in undrained granular material[J].Computers and Geotechnics,2020,119:103318. |
66 | LI X S, DAFALIAS Y F .Dissipation consistent fabric tensor definition from DEM to continuum for granular media[J].Journal of the Mechanics and Physics of Solids,2015,78:141-153. |
67 | KEN-ICHI K .Distribution of directional data and fabric tensors[J].International Journal of Engineering Science,1984,22(2):149-164. |
68 | SUFIAN A, RUSSELL A R, WHITTLE A J .Anisotropy of contact networks in granular media and its influence on mobilised internal friction[J].Géotechnique,2017,67(12):1067-1080. |
[1] | 张海燕, 马金一, 吴波, 等. 再生细骨料和砖粉双掺对3D打印混凝土性能的影响[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 18-27. |
[2] | 陈忠, 刘梓琛, 张宪民. 基于最小化各向同性误差的LiDAR-双目相机标定方法[J]. 华南理工大学学报(自然科学版), 2023, 51(2): 1-9. |
[3] | 安周建, 赵亚兵, 敏政, 等. 基于风冷散热的锂离子电池外部冷却模式与内部热物性特征的耦合分析[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 121-128. |
[4] | 蔡力亚, 赵克刚, 李剑峰, 等. 短玻纤增强复合材料的性能及其在车身上的应用[J]. 华南理工大学学报(自然科学版), 2020, 48(3): 108-115,135. |
[5] | 肖鑫 张肖宁. 排水沥青混合料各向异性空隙结构对渗水特性的影响[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 91-96. |
[6] | 黄祥. 各向异性表面生成算法及其应用[J]. 华南理工大学学报(自然科学版), 2013, 41(7): 1-6. |
[7] | 袁兵 黄炎生 任立飞 梁芳慧. 框架—剪力墙基础隔震结构的地震扭转反应[J]. 华南理工大学学报(自然科学版), 2006, 34(7): 94-98. |
[8] | 李雪婵 田立斌. 一维非均匀各向异性媒质传播特性的 SMM 分析[J]. 华南理工大学学报(自然科学版), 2004, 32(9): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||