华南理工大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (11): 125-132.doi: 10.12141/j.issn.1000-565X.220139

所属专题: 2022年土木建筑工程

• 土木建筑工程 • 上一篇    下一篇

基于GA-BP神经网络的泡沫轻质土强度预测

周中 邓卓湘 陈云 胡江锋   

  1. 中南大学 土木工程学院,湖南 长沙 410075
  • 收稿日期:2022-03-18 出版日期:2022-11-25 发布日期:2022-05-13
  • 通信作者: 陈云(1997-),女,硕士研究生,主要从事隧道与地下工程研究。 E-mail:1721037578@qq.com
  • 作者简介:周中(1978-),男,博士,副教授,主要从事隧道与地下工程研究.Email:dazhong@csu.edu.cn.
  • 基金资助:
    湖南省自然科学基金资助项目(2020JJ4743)

Strength Prediction of Foam Light Soil Based on GA-BP Neural Network

ZHOU Zhong DENG Zhuoxiang CHEN Yun HU Jiangfeng    

  1. School of Civil Engineering,Central South University,Changsha 410075,Hunan,China
  • Received:2022-03-18 Online:2022-11-25 Published:2022-05-13
  • Contact: 陈云(1997-),女,硕士研究生,主要从事隧道与地下工程研究。 E-mail:1721037578@qq.com
  • About author:周中(1978-),男,博士,副教授,主要从事隧道与地下工程研究.Email:dazhong@csu.edu.cn.
  • Supported by:
    the Natural Science Foundation of Hunan Province(2020JJ4743)

摘要:

泡沫轻质土的抗压强度是其重要的力学性能。精准地预测和调整泡沫轻质土的抗压强度,对于提高施工效率有重要的现实意义。为实现对泡沫轻质土抗压强度的智能控制和优化,设计了包含4节点输入层、8节点隐层、1节点输出层的拓扑结构,输入层采用遗传算法(GA)对BP神经网络的权重和阈值进行改进。以水固比、粉灰比、细集料掺合比以及气泡率4个参数作为输入参数,28天抗压强度为输出参数,以室内实验数据作为样本,使用均方差(MSE)、决定系数(R2)和相对误差等对优化前后两种模型进行验证和对比分析,并以此为基础建立了基于不同性能需求的配合比设计方法。结果表明:相比BP神经网络,GA-BP神经网络训练的适应度函数值更大、均方差更小,预测值与实际值的拟合度可达到0.946,具有更强的预测精度和泛化能力,同时遗传算法的全局搜索能力也弥补了BP神经网络容易陷入局部最优的缺陷,且能更好地指导粉煤灰泡沫轻质土强度预测配合比设计。基于GA-BP神经网络的泡沫轻质土强度增长预测模型可实现对泡沫轻质土抗压强度的灵活调整,对于工程施工具有重要的参考价值。

关键词: 泡沫轻质土, 抗压强度, BP神经网络, 遗传算法, GA-BP神经网络

Abstract:

Compressive strength is an important mechanical property of foamed lightweight soil. Accurately predicting and adjusting the compressive strength of lightweight foam soil is of great practical significance for improving construction efficiency. For intelligent control and optimization of foam light soil, this study designed a topology structure including 4 node input layer, 8 node hidden layer and 1 node output layer. The weight and threshold of BP neural network were improved by genetic algorithm (GA) in input layer. Using the four parameters of water-solid ratio, fly-ash ratio, fine aggregate mixing ratio and bubble rate as input parameters and 28-day compressive strength as output parameters, the two models before and after optimisation were validated and compared using mean squared error (MSE), coefficient of determination (R2) and relative error as samples. Based on this, a method for designing the mix ratio based on different performance requirements was established. The results show that compared with BP neural network, the GA-BP neural network has a larger fitness function value and smaller mean square deviation; the fit between the predicted and actual values can reach 0.946, with stronger prediction accuracy and gene-ralization ability; the global search ability of the genetic algorithm also makes up for the defect that BP neural network can easily fall into local optimum, and can better guide the fitting ratio design of the strength prediction of fly ash foam lightweight soil. The GA-BP neural network based strength growth prediction model for foam lightweight soils enables flexible adjustment of the compressive strength of foam lightweight soils, and it is of important refe-rence value for engineering construction.

Key words: foam lightweight soil, compressive strength, BP neural network, genetic algorithm, GA-BP neural network

中图分类号: