华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (7): 94-102.doi: 10.12141/j.issn.1000-565X.200496

所属专题: 2021年计算机科学与技术

• 计算机科学与技术 • 上一篇    下一篇

基于改进 CenterNet 的车辆识别方法

黄跃珍1,2 王乃洲3,4 梁添才3,5 赵清利3   

  1. 1. 国防科技大学 计算机学院,湖南 长沙 410022; 2. 广州无线电集团有限公司,广东 广州 510663; 3. 深圳市信义科技有限公司,广东 深圳 518067; 4. 华南理工大学 电子与信息学院,广东 广州 510640; 5. 华南理工大学 自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2020-08-20 修回日期:2021-05-06 出版日期:2021-07-25 发布日期:2021-07-01
  • 通信作者: 黄跃珍 ( 1973-) ,男,工程师,博士生,主要从事计算机视觉、深度学习研究。 E-mail:huangyz@grg.net.cn
  • 作者简介:黄跃珍 ( 1973-) ,男,工程师,博士生,主要从事计算机视觉、深度学习研究。
  • 基金资助:
    国家重点研发计划项目 ( 2018YFB0204301)

Vehicle Recognition Method Based on Improved CenterNet

HUANG Yuezhen1,2 WANG Naizhou3,4 LIANG Tiancai 3,5 ZHAO Qingli3   

  1. 1. College of Computer Science and Technology,National University of Defense Technology,Changsha 410022,Hunan,China; 2. Guangzhou Radio Group,Guangzhou 510663,Guangdong,China; 3. Shenzhen Xinyi Technology Co. ,Ltd. ,Shenzhen 518067,Guangdong,China; 4. School of Electronic and Information Engineering,South China University of Technology, Guangzhou 510640,Guangdong,China; 5. School of Automation Science and Engineering,South China University of Technology, Guangzhou 510640,Guangdong,China
  • Received:2020-08-20 Revised:2021-05-06 Online:2021-07-25 Published:2021-07-01
  • Contact: 黄跃珍 ( 1973-) ,男,工程师,博士生,主要从事计算机视觉、深度学习研究。 E-mail:huangyz@grg.net.cn
  • About author:黄跃珍 ( 1973-) ,男,工程师,博士生,主要从事计算机视觉、深度学习研究。
  • Supported by:
    Supported by the National Key R&D Program of China ( 2018YFB0204301)

摘要: 为解决车辆识别系统中类型识别率低的问题,提出了一种基于改进 CenterNet 的车辆识别方法。首先,该方法采用 ResNet18 作为基础网络,以减少网络参数; 然后, 针对 CenterNet 车辆目标识别存在定位效果不理想的问题,采用带间距的交并比损失取 代 CenterNet 损失函数中的偏置损失和宽高损失,同时采用单尺度自适应空间特征融合 及自适应逐层特征融合方法,将网络的多级特征进行融合。实验结果表明: 在Vehicle 数据集上,平均精度均值提升了 1. 9 个百分点; 在 BDD100K 和 Pascal VOC 数据集上, 预测边框跟真实边框交并比为 0. 5 时的平均精度分别提升了 5. 2 个百分点和 2. 5 个百分 点; 在 GTX1080Ti 上,推理速度每秒可达 149 帧,文中提出的改进 CenterNet 能够明显 提高车辆的识别精度。

关键词: 车辆检测, 类型识别, 深度学习, 特征融合

Abstract: A vehicle recognition algorithm based on improved CenterNet was proposed to solve the problem of low target recognition rate in vehicle recognition system. Firstly,the algorithm used ResNet18 as the basic network to reduce network parameters. Secondly,in view of the problem that the CenterNet model has the demerits of inaccurate positioning of vehicles,it was proposed to use the distance intersection over union loss to replace offset loss and width-high loss; meanwhile,single-scale spatial feature fusion ( SASFF) method and adaptive hierarchical feature fusion ( AHFF) method were employed to fuse several feature maps of the network. The experimental results show that on the Vehicle data set,mean average precision of the improved CenterNet models increases by 1. 9% ; on the BDD100K and Pascal VOC data sets,average precision at 0. 5 of the intersection over union between the predicted boxes and the true boxes increase by 5. 2% and 2. 5% ,respectively,and the inference speed on GTX1080Ti can reach 149 f /s. The improved CenterNet proposed in this paper can significantly improve vehicle recognition accuracy.

Key words: vehicle recognition, target detection, deep learning, feature fusion

中图分类号: