华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (7): 66-75.doi: 10.12141/j.issn.1000-565X.200689

所属专题: 2021年计算机科学与技术

• 计算机科学与技术 • 上一篇    下一篇

基于异构信息网络的紧耦合推荐算法

刘慧婷 李茵捷 郭玲玲 陈庚 赵鹏 韩宇晨   

  1. 安徽大学 计算机科学与技术学院,安徽 合肥 230601
  • 收稿日期:2020-11-13 修回日期:2021-02-25 出版日期:2021-07-25 发布日期:2021-07-01
  • 通信作者: 刘慧婷 ( 1978-) ,女,博士,副教授,主要从事自然语言处理和个性化推荐研究。 E-mail:htliu@ahu.edu.cn
  • 作者简介:刘慧婷 ( 1978-) ,女,博士,副教授,主要从事自然语言处理和个性化推荐研究。
  • 基金资助:
    国家自然科学基金资助项目 ( 61202227,61602004) ; 安徽省自然科学基金资助项目 ( 2008085MF219) ; 安徽 省高校自然科学研究项目 ( KJ2018A0013)

Tightly Coupled Recommendation Algorithm Based on Heterogeneous Information Networks

LIU Huiting LI Yinjie GUO Lingling CHEN Geng ZHAO Peng HAN Yuchen   

  1. School of Computer Science and Technology,Anhui University,Hefei 230601,Anhui,China
  • Received:2020-11-13 Revised:2021-02-25 Online:2021-07-25 Published:2021-07-01
  • Contact: 刘慧婷 ( 1978-) ,女,博士,副教授,主要从事自然语言处理和个性化推荐研究。 E-mail:htliu@ahu.edu.cn
  • About author:刘慧婷 ( 1978-) ,女,博士,副教授,主要从事自然语言处理和个性化推荐研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 61202227,61602004) ,the Natural Science Foundation of Anhui Province ( 2008085MF219) and the Natural Science Research Foundation of Colleges and Universities in Anhui Province ( KJ2018A0013)

摘要: 针对目前协同过滤方法面临的稀疏性问题以及辅助信息的异构特性未被充分利 用的问题,鉴于异构信息网络 ( HIN) 在建模复杂异构信息方面的优势,文中提出了一 种基于 HIN 的紧耦合推荐模型 ( HTCRec) ,利用异构信息网络嵌入和紧耦合协同过滤 框架进行个性化推荐。该模型首先聚合 HIN 中的元路径及其路径实例,再使用注意力 机制将目标用户或项目的辅助信息用各自聚合元路径的嵌入进行表示,然后显式地将元 路径合并到紧耦合交互模型中完成个性化推荐。在真实数据集上的实验结果表明, HTCRec模型较其他常用推荐模型具有更好的推荐性能,有效地缓解了数据稀疏问题。

关键词: 紧耦合推荐模型, 异构信息网络, 矩阵分解, 网络嵌入, 注意力机制

Abstract: In view of the problems of sparsity and underutilization of the heterogeneity of auxiliary information faced by current collaborative filtering methods and the advantages of heterogeneous information networks ( HIN) in modeling complex heterogeneous information,a HIN based tightly coupled recommendation model ( HTCRec) was proposed in this paper. It utilizes the heterogeneous information network embedding and a tightly coupled collaborative filtering framework to carry out personalized recommendation. Firstly,it aggregates meta-paths in a HIN and their corresponding path instances. Then it uses the attention mechanism to represent the auxiliary information of the target users or items in terms of the embedding of the respective aggregation meta-paths. At last,the meta-path is explicitly incorporated into the tightly coupled interaction model for personalized recommendation. The experimental results of the real data sets show that compared with the state-of-the-art recommendation models,the HTCRec model has better recommendation performance and effectively alleviates the problem of data sparsity.

Key words: tightly coupled recommendation model, heterogeneous information network, matrix factorization, network embedding, attention mechanism

中图分类号: