华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (7): 59-65.doi: 10.12141/j.issn.1000-565X.200473

所属专题: 2021年计算机科学与技术

• 计算机科学与技术 • 上一篇    下一篇

基于注意力机制的耦合协同过滤模型

黄敏1 齐海涛1 蒋春林2   

  1. 1. 华南理工大学 软件学院,广东 广州 510006; 2. 华南理工大学 图书馆,广东 广州 510006
  • 收稿日期:2020-08-10 修回日期:2021-03-08 出版日期:2021-07-25 发布日期:2021-07-01
  • 通信作者: 黄敏 ( 1976-) ,女,博士,副教授,主要从事移动计算、群智感知技术研究。 E-mail:minh@scut.edu.cn
  • 作者简介:黄敏 ( 1976-) ,女,博士,副教授,主要从事移动计算、群智感知技术研究。
  • 基金资助:
    广东省软科学重点项目 ( 2016B070704010 ) ; 广东省自然科学基金资助项目 ( 2017A030313432, 2021A1515011496) ; 国家社会科学基金资助项目 ( 17BTQ020)

Coupled Collaborative Filtering Model Based on Attention Mechanism 

HUANG Min1 QI Haitao1 JIANG Chunlin2   

  1. 1. School of Software Engineering,South China University of Technology,Guangzhou 510006,Guangclong,China; 2. Library of South China University of Technology,Guangzhou 510006,Guangdong,China
  • Received:2020-08-10 Revised:2021-03-08 Online:2021-07-25 Published:2021-07-01
  • Contact: 黄敏 ( 1976-) ,女,博士,副教授,主要从事移动计算、群智感知技术研究。 E-mail:minh@scut.edu.cn
  • About author:黄敏 ( 1976-) ,女,博士,副教授,主要从事移动计算、群智感知技术研究。
  • Supported by:
    Supported by the Key Soft Science Project of Guangdong Province ( 2016B070704010) ,the Natural Science Foundation of Guangdong Province ( 2017A030313432,2021A1515011496) and the National Social Science Foundation of China ( 17BTQ020)

摘要: 协同过滤作为一种常见的推荐系统实现方式,能给用户带来个性化的推荐服务 体验。传统的协同过滤模型没有对用户和项目的不同显式属性的关注程度进行挖掘和分 析,导致了不同显式属性的关键程度未被模型关注。因此,在基于卷积神经网络的耦合 协同过滤模型的基础上,文中引入了注意力机制,以深度挖掘显式属性的关键程度,增 强在关键属性上的参数学习梯度; 提出了一种新的耦合程度计算方法,以保证参数的齐 次性,提高模型的推荐性能。实验结果表明,文中提出的模型的推荐精准率较传统协同 过滤方法和耦合协同过滤模型更优,top K@ 10 命中率和归一化折损累计增益分别达到 0. 8508 与 0. 5850。

关键词: 推荐系统, 协同过滤, 注意力机制, 卷积神经网络

Abstract: As a common implementation of recommender system,collaborative filtering can bring personalized recommendation service experience to users. Traditional collaborative filtering models do not mine and analyze the attention level of different explicit attributes of users and items,leading to the critical level of different explicit attributes not paid attention by the model. Therefore,based on the coupled collaborative filtering model based on convolutional neural network,an attention mechanism was introduced in the paper to deeply mine the critical degree of explicit attributes and enhance the parameter learning gradient on critical attributes. And a new method of calculating the coupling degree was proposed to ensure the flushness of parameters and to improve the recommendation performance of the model. The experimental results show that the recommendation accuracy rate of the model proposed in the paper is better than that of traditional collaborative filtering methods and coupled collaborative filtering models,and the cumulative gain of topK@ 10 hit ratio and normalized discount cumulative gain reach 0. 8508 and 0. 5850,respectively.

Key words: recommender system, collaborative filtering, attention mechanism, convolutional neural network

中图分类号: